1.。.,!??!天气预报可以精确到未来后几天,国外怎样

2.天气预报为什么会不准?

3.天气预报可以精确到未来后几天,国外怎样

4.现代天气业务发展指导意见的主要任务

欧洲气象预报中心_欧洲天气预报数值模式

数值天气预报与经典的以天气学方法作天气预报不同,它是一种定量的和客观的预报,正因为如此,数值天气预报首先要求建立一个较好的反映预报时段的(短期的、中期的)数值预报模式和误差较小、计算稳定并相对运算较快的计算方法。其次,由于数值天气预报要利用各种手段(常规的观测,雷达观测,船舶观测,卫星观测等)获取气象资料,因此,必须恰当地作气象资料的调整、处理和客观分析。第三,由于数值天气预报的计算数据非常之多,很难用手工或小型计算机去完成,因此,必须要有大型的计算机。

根据大气实际情况,在一定初值和边值条件下,通过数值计算,求解描写天气演变过程的流体力学和热力学方程组,预报未来天气的方法。和一般用天气学方法、并结合经验制作出来的天气预报不同,这种预报是定量和客观的预报。预报所用或所根据的方程组和大气动力学中所用的方程组相同,即由连续方程、热力学方程、水汽方程、状态方程和3个运动方程(见大气动力方程)所构成的方程组。方程组中,含有7个预报量(速度沿x,y,z三个方向的分量u,v,w和温度T,气压p,空气密度ρ以及比湿q)和7个预报方程。方程组中的粘性力F,非绝热加热量Q 和水汽量S,一般都当作时间、空间和这7个预报量的函数,这样,预报量的数目和方程的数目相同,因而方程组是闭合的。

。.,!??!天气预报可以精确到未来后几天,国外怎样

天气预报在20世纪50年代以前都是人工地在一张地图(气象上称天气图)上将观测数据填好,再由预报员在这张天气图分析出高气压、低气压等气象要素。人为、主观地凭经验预报。20世纪50年代开始美国研究和实施“数值天气预报”,它是科学地求解流体动力学的偏微分方程组的初值问题。经过半个世纪的发展,现在在发达的欧洲和美国都是根据“数值天气预报”做出预报。但我国现在还是以预报员经验预报为主,说得难听一点,预报员在瞎猜。我国数值预报起步也不晚,但领导重视不够,电脑落后。但近年来,我国也买了大的电脑(在世界上数一数二的),但由于体制等问题,数值预报模式都是从国外引进的。能干的不让干,不会的在瞎干。国家虽然投资很大,但效果很差。浪费了国家的钱。

很难估算出天气预报不准主客观原因谁多谁少,但可以肯定我国的预报准确率远不如发达国家的。因为我们是突出政治,技术是第二位的。

你想看天气预报,可以去www.t7online.com 网站看看。它的预报准确率比我国任何一个气象台(包括中央气象台)的都准。

好运!!!

天气预报为什么会不准?

现代天气预报的主要手段是数值模式,2011年中国气象局下发的指导文件曾提到:目前国内T639数值模式的可用时效为6.5天,而国外最好的模式EC数值模式为7.5天左右。

但这只是模式的可用时效,不代表天气预报的可预报长度。

目前,在天气情况变化不十分剧烈的情况,5天的预报是可信的。

天气预报可以精确到未来后几天,国外怎样

呃,试着回答一下吧。天气预报的话,现在更多的用的是数值天气预报,就是把今天的观测数据,放到模式里面,最后得到模式的结果,然后对这些模式结果再进行释用,得到对未来的天气预报产品。首先是这个观测数据,虽然现在的测站很多,而且随着自动站的建设(还有气象卫星等),数据越来越多(数据怎么样怎么用是另一个问题),但是也要看到站点的分布还是不均匀的,就我们国家而言西北部还是少的。我们国家的部分气象测站的数据还会参与国际的交换,这样我们也能拿到国外的一些站点的数据,拿到这些数据再进行数据同化,使得初始场和模式更加的“兼容”。然后就是数值模式,欧洲中心的模式结果,日本的模式结果,还有国家局的模式结果,貌似预报员都可以看到吧,(这个需要真正的预报员更正,我们本科实习的时候,貌似是这样的,不过只有气压差温度场等值线图),不同的模式会给出不同的结果。这和模式的动力框架和物理参数化方案都很有关系,所以才需要不断的开发模式。换句话说,数值模式只是对真实的大气的简单模拟,肯定有误差。还有就是对模式结果的释用,不同的预报员由于经验能力等各方面因素,看问题的深度会不一样。关于你给出的那个相差5-10度,我有点点好奇,因为据我所知,模式对气温这一物理量的预报还是比较好的,这个5-10度有点点小恐怖,不知道你一直比较的是哪个地区,用的预报产品是?

满意请采纳

现代天气业务发展指导意见的主要任务

这个不好回答

简单的说吧,现代天气预报的主要手段是数值模式,2011年中国气象局下发的指导文件曾提到:目前国内T639数值模式的可用时效为6.5天,而国外最好的模式EC数值模式为7.5天左右。

但这只是模式的可用时效,不代表天气预报的可预报长度。

目前,在天气情况变化不十分剧烈的情况,5天的预报是可信的。

现代天气业务以提高天气预报准确率和精细化为核心,重点围绕数值预报业务系统建设、专业化监测预报业务和技术系统研发、多种观测资料综合分析应用、集约化预报业务流程调整与完善以及专家型预报员团队建设等方面推进现代天气业务发展建设。其业务建设的重点任务包括:

(一)数值天气预报业务

按照《中国气象局数值天气预报业务发展计划(2008—2011年)》及其滚动修订的计划,推进GRAPES模式发展。在进一步改进和深化T639业务模式应用的基础上,发展建立以GRAPES模式为基础的数值预报业务系统及动力和统计相结合的数值预报产品解释应用业务。

1.数值预报模式

发展完善三维/四维变分同化分析系统并业务运行。提高全球模式卫星遥感资料同化应用水平,在全球变分同化分析系统中卫星遥感资料能够占到所同化资料总量的80%以上。建立区域变分同化系统,有效同化应用多普勒天气雷达、卫星、自动站等高时空分辨率的稠密资料,实现逐小时快速资料同化分析,显著改善对中小尺度系统的分析模拟与短时短期预报能力。有效融合洋面上可获得的卫星、雷达等各种观测资料,完善台风涡旋初始化技术。研发陆表参数的资料同化方法,建立全球实时下垫面资料自动生成系统。开展中国区域资料再分析,利用成熟的区域同化与模式,建立10年长度的试验性再分析资料集。

建立全球25公里分辨率和中国区域3~5公里分辨率的分析与预报系统。优化全球模式动力框架和垂直坐标,改进极区和大地形区的处理方案。考虑平流层物理过程,提升模式顶高。重点改进影响东亚区域预报技巧的降水过程、陆面过程的参数化方案,优化辐射过程中云的处理和预报方案,实现物理过程的合理精细化,发展能反映中国天气气候特点的物理过程参数化方案。研发模式动力诊断与物理诊断的技术和软件,建立数值天气预报系统综合诊断平台,为模式预报性能的改进提供依据。

在国家级发展全球、区域集合预报系统并实现业务运行。发展基于奇异向量的初值扰动方法和物理过程随机扰动方法;有效增加集合预报样本、模式空间分辨率和预报时效,全球集合预报的预报时效达到2周。完善中国TIGGE中心建设,发展多业务中心多模式集合预报集成技术,进一步提高温度、定量降水等要素的概率预报能力;发展概率预报降尺度技术,进一步提高精细概率预报水平。区域级参与国家级数值预报系统研发,并针对本区域开展适合于本地地域与气候特征的区域数值预报业务。

2.数值预报产品统计释用

发展基于T639模式及业务化的区域数值预报模式的解释应用工作,完善数值天气预报产品释用和订正平台。在国家级建立中短期灾害性天气的集合预报释用业务,加强数值预报产品应用的指导能力建设,增加指导产品的种类和数量,提高指导产品的准确率和精细化程度。国家级制作7天全国县市和5公里格点的气象要素客观释用产品并下发,省级结合本地经验制作精细到乡镇及其他服务地点的气象要素释用产品。

(二)天气分析业务

以多种观测资料和数值预报产品的综合应用为基础,以MICAPS系统为平台,逐步从以天气尺度分析为主的业务向天气尺度与中尺度分析相结合的业务转换。

1.天气尺度和中尺度分析业务

开展并完善基于多种资料的天气尺度和中尺度主观分析业务。完善基于高空和地面资料的常规天气尺度分析业务,特别是对灾害性天气发生发展有明显影响的各种特征线、特殊区域、特征系统和物理量的分析。开展基于中尺度观测资料和快速更新同化系统输出的精细数值分析预报产品的中尺度天气分析业务,绘制反映中尺度天气系统发生发展特征及其环境特征的综合分析图。加强对中尺度系统的空间结构、要素配置和物理过程演变的认识和理解,准确判断灾害性天气的种类、强度和落区。完善天气图分析规范。国家级重点加强天气尺度分析,并将分析的地面和高空图下发给各级气象台站,同时开展中尺度分析,为强天气潜势预报奠定基础。省级重点加强中尺度分析,为强对流天气的短时临近预报和灾害性天气短期落区预报提供支持。地、县级气象部门利用上级的分析产品,做好本地灾害性天气预报和补充订正工作。

完善和发展基于多种资料的灾害性天气发生发展的动力热力特征物理参数客观诊断分析技术。国家级向全国提供基于观测资料和数值预报模式系统输出的物理量客观诊断产品,各级气象台站做好客观诊断产品的应用,建立适应本地灾害天气特征的物理量指标体系。

2.灾害性天气和气象灾害监测分析业务

在国家级和省级研发灾害性天气、气象灾害的特征识别技术。利用现代信息处理技术,针对台风、暴雨(雪)、寒潮、大风(沙尘暴)、低温、高温、雷电、冰雹、霜冻、大雾、冻雨、雾凇、龙卷等灾害性天气以及干旱、地质灾害、山洪、城市洪水、道路结冰、积雪、电线结冰、森林和草原火险等气象灾害不同特征,通过各种观测资料的融合分析,在MICAPS平台下实现灾害性天气和气象灾害的人机交互识别和报警功能,建立灾害性天气和气象灾害的监测分析业务。通过完善区域联防制度,实现上下游台站间的信息通报。加强气象灾害的现场调查和地区间观测数据的实时共享。完善预警软件系统的协同功能,提升灾害性天气和气象灾害的监测率。

3.数值天气预报产品检验、评估及订正业务

各级气象台要以各种实时观测资料、数值预报产品检验结果和预报员经验为依据,开展数值预报形势场、要素场以及主要天气系统的动态检验,分析误差规律;比较不同数值模式产品误差,分析数值预报产品相关特征线和特征天气系统的演变规律,订正主要天气系统的移动、强度等信息,提高数值预报产品的使用能力。在国家级开展地面预报图订正业务,并将订正后的地面图下发各级气象台站。

(三)天气预报业务

以多种资料融合技术和高分辨率数值预报产品为基础,提高灾害性天气快速诊断和短时临近预报水平。以数值预报产品释用技术和预报员经验为依托,发展精细化气象要素短期预报业务,特别是定量降水预报业务。利用动力和统计相结合的技术,完善灾害性天气落区短期预报业务。以集合数值预报为依托,提高降水、灾害性天气和其他极端天气的概率预报水平。依托超级集合预报改进完善中期预报业务、发展延伸期预报业务,逐步建立无缝隙预报业务体系。

1.临近预报业务(0~2小时)

大力发展各种观测资料的融合技术,加快建设基于雷达、卫星和自动站资料的定量降水估测(QPE)业务。发展短时强降水、雷电、冰雹、雷雨大风、龙卷等强对流天气的监测分析技术,增强对强对流天气的识别能力。发展强对流天气和台风等的临近预报技术,研发外推预报和数值预报产品释用相结合的预报技术,提高预警时效。在省级和地市级应用具有实时自动识别、报警和预报功能的强对流天气临近预报业务系统。增强预报员对雷达、卫星等资料的分析和对强对流天气的识别能力,提高强对流天气临近预报命中率和时效。

2.短时预报业务(0~12小时)

发展气象观测资料与高分辨率数值分析预报产品融合技术。加强预报员对高分辨率快速分析预报产品的分析和应用,增强对中尺度天气系统及其特征物理量的综合分析能力。发展基于动力和统计释用的灾害性天气落区预报技术。

在国家级和省级建立12小时内时间分辨率小于3小时的灾害性天气种类、强度和落区预报业务。在国家级建立基于集合预报的短时灾害性天气概率预报业务。建立全国上下联动的短时预报业务技术流程。

3.短期预报业务(1~3天)

改进基于稠密气象观测资料和高分辨率数值模式产品的气象要素预报释用技术,发展模式释用与交互订正相结合的站点、格点两种方式的精细化气象要素预报系统,建立全国5公里格点和乡镇及其他服务地点的气象要素预报业务,24小时预报时效内时间分辨率达到3小时。继续提高温度、风、相对湿度等气象要素的预报准确率,特别是提高定量降水预报的准确率和精细化程度。发展主观等级降水预报与高分辨率数值模式产品融合的定量降水预报(QPF)技术,定时制作72小时预报时效内时间分辨率为6小时的降水预报产品。开展预报时效达72小时的雷雨大风和冰雹潜势预报业务,24小时内时间分辨率达到6小时,24-72小时内时间分辨率达到12小时。建立全国统一的精细化预报产品共享数据库(NWFD),向专业气象预报系统和社会公众提供数字化产品。

提高台风路径和强度预报能力以及风雨预报精细化水平。72小时预报时效内时间分辨率达12小时;24小时台风路径预报误差接近100公里,台风强度预报误差降至4.5米/秒左右。

国家级和省级要大力发展台风、暴雨、强对流等灾害性天气落区预报业务,建立和完善灾害性天气的概念模型和预报指标体系。在国家级建立区域集合预报产品分析和灾害性天气概率预报业务。省级建立并加强精细到乡镇及其他服务地点的气象要素预报业务。加强各级预报员对气候背景、主要影响系统发生发展演变特征、数值预报形势场和特征物理量场的分析工作,提高预报员对各类灾害性天气识别和分析能力,发挥预报员对数值预报产品的释用和分析订正作用,做好灾害性天气种类、强度和落区预报。

4.中期预报业务(4~10天)

大力研发灾害性天气的中期客观预报方法,国家级要大力发展针对中期集合数值预报产品的释用技术,发展降水、温度、相对湿度等常规气象要素以及高温、强降水、低温冷害等灾害性天气中期概率预报方法,开发相应的概率预报产品。

发展台风路径和强度的中期预报方法,尤其大力发展基于全球模式和区域模式基础上的集成预报、集合预报和概率预报技术,延长台风预报时效至120小时,发布台风强度和路径概率预报产品。

在国家级和省级发展数值预报可用时效内逐日滚动的常规气象要素预报业务,在国家级建立灾害性天气中期概率预报业务。提高国家和省级预报员对中期数值预报产品的性能分析与解释应用能力,采用天气气候学、动力统计学方法,重点提高灾害性、关键性和转折性天气的中期预报水平。

5.延伸期预报业务(11~30天)

在国家级发展海陆气耦合模式及其集合预报业务系统,积极研发延伸期降水和温度距平概率预报产品。研究引发我国持续性异常气象事件的大气环流前兆信号,建立我国持续性异常气象事件的动力统计预报方法。基于集合预报业务系统,结合天气气候学、动力统计学等方法,建立重大天气过程和降水、温度要素的延伸期客观预报系统,结合现代气候业务发展,开展延伸期预报业务。

(四)预报技术总结和产品检验业务

在各级气象部门建立常态化的预报技术总结机制,推进预报技术总结的系统化和深度发展。加强天气业务产品的检验。

1.建立天气预报日志制度

在各级气象台建立天气预报日志制度,及时记录各类重要天气的预报过程和预报思路、各种数值预报产品的预报性能、各种新资料的应用情况以及各地特色预报方法使用效果等,为总结预报经验与教训、分析数值预报模式性能、研究改进预报方法提供一手信息。要将天气预报日志制度建立列入业务考核内容。

2.建立预报技术总结交流机制

各级气象部门应建立常态化的预报技术总结机制,及时总结各地发生的重大天气过程,积累预报经验,凝练相关科学问题。发挥电视天气会商系统、气象网站、技术总结专刊和专业期刊作用,为预报技术总结提供交流平台,推进预报技术总结的系统化,编制分省和分天气类型的预报员手册。

3.建立分类预报产品检验业务

系统开展预报产品检验和评估业务。改进常规气象要素预报检验业务,建立并完善灾害性天气短时临近预报、灾害性天气落区预报、中期天气预报和延伸期天气趋势预报的检验业务,加强业务数值模式预报性能的实时检验评估业务。分别建立基于统一检验方法的全国及分省的检验评估业务和省级台站相对中央气象台的检验评估业务。

重点加强灾害性天气预报和短时临近预报检验方法研究,改进完善各类预报产品的客观化、标准化和规范化检验评分系统。通过预报产品的检验达到客观评价预报质量、分析误差来源的目的。

(五)预报业务的技术系统 按照“统一设计,有序实施”的原则,逐步建立集约化的基本天气预报业务技术系统。发展全国通用的气象信息综合分析处理系统(MICAPS),发展全国标准化与地方化结合的短时临近预报业务系统(SWAN),建立全国精细化预报产品共享数据库(NWFD)。

1.气象信息综合分析处理系统(MICAPS)

进一步确立MICAPS在全国天气预报综合业务平台的核心和基础地位,由国家级牵头,集约化、专业化地发展全国适用的MICAPS平台系统,实现软件设计通用化、数据共享标准化、系统结构网络化、交互工具人性化。加快MICAPS系统的天气分析、精细化预报交互订正、中期预报以及数值预报产品分析等通用功能模块的开发和应用,实现MICAPS的数值预报产品时空一致性、要素协调性计算的格点化订正功能,强化MICAPS在各级气象台天气分析预报业务中的基础性和关键性作用。基于MICAPS技术框架,开发台风、海洋、水文、交通等专业化模块,为全国现代天气业务提供专业化平台支持。

2.短时临近预报业务系统(SWAN)

继续开展全国灾害性天气短时临近预报业务系统(SWAN)研发和推广应用。提高对雷达、卫星、地面自动气象站和中尺度快速同化资料的使用水平;实现短时强降水、冰雹、雷暴大风、龙卷等中小尺度天气系统的自动识别;建立定量降水估测和临近预报、强对流短时和临近预报、闪电临近预报等方法,并基于MICAPS技术框架实现产品的综合显示和分析。各级气象台在该系统的规范和标准功能体系下结合地方灾害性天气特点建立本地化的短时临近预报业务系统。

3.精细化天气预报产品共享数据库(NWFD)

发展全国精细化预报产品共享数据库(NWFD),保证对外预报服务产品的一致性。国家级重点提供县级以上城市的要素预报产品,省级提供本省内更加精细化的城镇预报产品。开展基于格点化气象要素预报的数据存储和检索功能,实现要素预报结果实时提供、网上直接调用、结论实时评定等功能。

4.业务技术系统二次开发

国家级加强MICAPS,SWAN,NWFD等业务技术系统研发的标准化和规范化管理,提升框架设计的开放程度,提供二次开发工作便利条件。省级单位根据本地业务需要和数据特点在总体框架下开发本地应用模块,力争使基本天气预报业务的技术系统达到国际先进水平。