1.风向标是测定什么的科学仪器

2.如何监测环境空气污染?

3.环境监测方案制定 校园水环境监测方案

4.模拟温度传感器(实现温度监测与控制的必备工具)

5.参观当地的气象站说说都有什么测量工具分别有什么用途?

6.大气环境监测详细资料大全

7.粉尘检测仪器怎么用

气象环境监测设备_环境气象监测仪使用方法

溶解氧在线监测仪

产品概述:

NHR-DO10系列溶解氧在线监测仪用膜法(极谱法)测量溶解氧,控制器可连续监测数据通过变送输出实现远传监控,也可以连接RS485接口通过MODBUS-RTU协议可方便联入上位机实现组网监控。

产品特点:

用3.5英寸高亮度、高分辨率128*64点阵液晶显示,可直观显示溶氧值、二路模拟输出值、温度和二路报警状态值。

支持中、英文操作界面的切换,简单方便;硅胶轻触按钮,人机交互好。

产品具有高精度测量、工作稳定、抗干扰能力强等特点。

户外防水型设计(防护等级:IP65),仪表外观大方、高端,内设国外进口的可拔插式端子设计,接线作业方便。

支持多种安装方式,可选择盘装、壁挂、圆管安装。

支持电极校准功能、手/自动温度补偿功能,大气压力补偿功能。

产品具有隔离变送输出和RS485数字通讯功能(Modbus RTU协议),可组网实现数据的监控与记录。

应用领域:

产品广泛应用于火电、化工化肥、冶金、环保、制药、生化、食品和自来水等溶液中溶解氧和温度的连续监测。

pH/ORP在线监测仪

用高阻设计,测量稳定不跳字,RS-485通讯,抗干扰能力强

产品概述:

NHR-PH10系列pH/ORP在线监测仪是一款智能在线化学分析仪器,能连续监测数据通过变送输出实现远传监控,也可以连接RS485接口通过MODBUS-RTU协议可方便联入上位机实现组网监控。

产品特点:

电路用高阻设计,输入阻抗大于1012欧姆,测量稳定不跳字、抗干扰能力强。

用3.5英寸高亮度、高分辨率128*64点阵液晶显示,同屏显示pH(ORP)值、变送输出值、补偿温度和两路报警状态。

支持中、英文操作界面的切换,简单方便;硅胶轻触按钮,人机交互好。

户外防水型设计(防护等级:IP65),仪表外观大方、高端,内设国外进口的可拔插式端子设计,接线作业方便。

支持多种安装方式,可选择盘装、壁挂、圆管安装。

支持电极校准功能、手\自动温度补偿功能,丰富的温度补偿模式(PT1000/NTC10K)可选配。

产品具有隔离变送输出和RS485数字通讯功能(Modbus RTU协议),可组网实现数据的监控与记录。

应用领域:

广泛应用于环保水处理、纯净水、循环水、锅炉水等系统以及电子、电镀、印染、化学,食品、制药等制程领域,在环境监测、污水处理厂、工业制程监控等应用中表现卓越。

电导率在线监测仪

户外防水型设计,可选择盘装、壁挂、圆管安装,丰富的温度补偿模式

产品概述:

NHR-EC10系列电导率在线监测仪可对工业用水的电导率(TDS)值进行连续测量和控制。用户可以通过监测仪的界面配置和校准实现4-20mA模拟输出,可以实现继电器控制及数字通讯等功能。

产品特点:

用3.5英寸高亮度、高分辨率128*64点阵液晶显示,可直观显示电导率/TDS值、电阻率、二路模拟输出值、温度和两路报警状态值。

支持中、英文操作界面的切换,简单方便;硅胶轻触按钮,人机交互好。

户外防水型设计(防护等级:IP65),仪表外观大方、高端,内设国外进口的可拔插式端子,接线作业方便。

支持多种安装方式,可选择盘装、壁挂、圆管安装。

产品具有高精度测量、工作稳定、抗干扰能力强。

支持电极校准功能、手\自动温度补偿功能,丰富的温度补偿模式(PT1000/NTC10K)可选配。

产品具有隔离变送输出和RS485数字通讯功能(Modbus RTU协议) ,可组网实现数据的监控与记录。

设计上以高性能微处理器为核心,三档量程自动转换,电极常数0.0001~19.9999 cm-1可调,量程广,精确度高。

应用领域:

产品广泛应用于RO、超纯水、冷却水、锅炉水、工业制程及水处理等溶液中电导率/TDS和温度的连续监测。

风向标是测定什么的科学仪器

可以用在光伏电站——光伏环境监测以及农业、水文、学校、电力—生态环境监测等。案例如下:

(1)光伏环境监测仪,用于光伏电站的选址、运维管理、气象数据监测等任务以及故障预警等功能用途。

(2)草原生态环境监测仪(草原气象站)对牧草的覆盖度、植株高度和生态气象环境进行实时、定期的测定和监测,对掌握牧草长势、牧草光合作用和蒸腾作用能力、生长速度、生长速度及其与外界气象条件的关系提供科学的数据依据。

如何监测环境空气污染?

风向标是测定风的方向的科学仪器。

一、作用和原理:

风向标的主要作用是指示风的吹向,帮助人们了解风的方向。它的工作原理基于风的作用力。风向标通常由一个轴或支架和一个指示风向的指针组成。指针会随着风的方向而移动,指示出风的来向。

风向标的指针通常是相对于一个固定的参考方向,例如地理北方或罗盘的方向。当风吹来时,风的作用力会使指针指向风的方向,从而显示出风的来向。

二、风向标的种类:

经典风向标: 经典风向标通常由一个竖直的杆或轴上安装一个指针,指针可以360度旋转,以指示风的方向。这种类型的风向标常见于气象站和航海领域。

翼型风向标: 翼型风向标是一种通过空气动力学原理工作的风向标。它的形状类似于一个小飞机的机翼,当风吹来时,空气的流动会使得翼型风向标旋转,并指向风的方向。这种风向标通常用于航空领域。

气象风向标: 气象风向标是专门设计用于气象测量的风向标。它们通常与其他气象仪器一起使用,以监测和记录风速和风向的数据。

航海风向标: 航海风向标用于船舶和航海导航。它们通常较大,以便在海上远距离可见,并且设计成能够经受恶劣的海洋环境。

三、应用领域:

风向标在多个领域中都有广泛的应用:

气象学: 气象站使用风向标来监测和记录风的方向,以便制定天气预报和分析气象数据。风向是气象学中的重要参数之一。

航海和航空: 船舶和飞机上配备有风向标,以帮助导航和确定飞行或航行方向。船舶和飞机需要准确了解风的方向,以保持航线的稳定性。

环境监测: 在环境监测领域,风向标用于测量和记录大气中的风向,这对于分析和控制空气污染以及保护环境至关重要。

农业和农业气象学: 农民使用风向标来了解风对农作物和农场的影响。风向标也有助于农业气象学家研究气象条件对农作物的影响。

户外活动和: 风向标在户外活动中经常用于确定风的方向,如帆船、滑翔伞、风筝飞行和高尔夫等。

环境监测方案制定 校园水环境监测方案

要检测室内空气的污染物就要找专的检测公司。现在专业的检测公司主要检测的就是氨、苯、甲醛、氡、TVOC。而用到的主要方法分为两种:其一种为精密度测定法,包括世界卫生组织推荐的高效液体色谱法,气相色谱法及分光光度法等。其二为简易测定法,该法主要用于快速检测,其精确度要求不高。主要有电法学方法,可以显示测定数据,以及检测管方式和测定纸方式,即通过检测气体与指示剂发生法学反应而表现出的颜色变化来测定检测气体浓度。

而检测氨浓度的仪器可分为:分光光度法,电化学法和快速检测管三种。

其中,分光光度法检测出来的数据相对准确度高,但操作不方便,目前还没有能现场操作的仪器;电化学法,以氨传感器为主体的检测仪成本较高,检测数据相对准确,操作便捷,但传感器是易疲劳件,每年需更换;快速检测法以快速检测管为主,检测的精确度稍差些,但能满足室内空气检测的要求,普遍适用于室内空气定性检测。快速检测管即通过检测气体与指示剂发生法学反应而表现出的颜色变化来测定检测气体浓度,操作相当方便,成本也比较低廉。

据原生钛检测中心了解,目前市场上分光光度仪和检测管式的快速检测仪较应用比较广泛,也能比较普遍地满足检测机构的要求。相对而言,便携式现场检测仪器作为现场快速检测手段,可以快速给出待测环境中的物质浓度。如果发现超标,再用化学分析或色谱质谱等方法加以确认,从而达到多快好省的检测目的。

原生钛检测中心也是专业做室内空气污染检测的机构,有多年的经验。要是有室内空气检测方面的问题就可以打电话咨询他们。

模拟温度传感器(实现温度监测与控制的必备工具)

环 境 监 测 方 案 制 定

污染源调查: 水污染源

污水排放量汇总

固体废物污染源 (1) 生活垃圾

经调查,拟建项目区周边地区的生活垃圾固体废物主要来自项目规划范围内及周边居民产生的生活垃圾。

(2)固体废弃物:主要是少量农户生活垃圾和少量农作废料,对环境影响不大

空气环境:本项目的南边是东京大道,道路扬尘和汽车尾气是主要大气污染源。但是公路两侧设有50~100米的绿化缓冲带,使其对周围环

境影响不大。

校园空气污染物的排放源、数量、燃料种类和污染物名称及排放方式等,为空气环境监测项目的选择提供依据。

表1 校园空气污染源情况调查

大气污染物排放总量 (单位:t/a )

大气污染物 排放量(t/a)

声环境:东京大道及西边金明大道的交通噪声是评价区目前最主要的噪声源,对局部地区有一定的影响。

电磁辐射:规划用地范围内有一架空高压线通过,产生一定的电磁辐射污染。

烟尘

SO 2

NO x

CO

THC

1、地表水环境现状监测 (1)监测断面布设

根据该项目水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化,河流的宽度、深度以及水体沿岸的现状和水的用途,饮用水源分布和重点水源保护区等来确定监测断面及数目。

因为水面宽 ≤50米 则设一条(中泓垂线) 而且断面上垂线的布设应避开岸边污染带。水深 ≤5米则设 一点(水面下0.5米处) 。

依据该项目的水污染特性,并结合项目所在区域地表水的分布状况,在评价区内共设置6个监测断面。

(2)监测项目

流量、流速、水温(℃) 、pH 值、石油类、氨氮、总氮、BOD 5、COD Cr 、溶解氧、高锰酸盐指数、总磷、粪大肠菌群、铜、铅、锌、六价铬。

(2) 样时间及频率

监测时期为一期(枯水期),连续样三天. (3) 分析方法

样和监测方法根据《 地表水和污水监测技术规范》(HJ/T 91-2002)和《地表水环境质量监测实用分析方法》进行。 (4)地表水环境质量现状评价

根据检测结果表明六个断面均有部分指标超标,主要超标指标为BOD 5、CODcr 、TP ,另外,北沙河与京包线交界处阴离子表面活性剂也出现超标, 从超标的水质指标来看,造成东沙河和北沙河水质超标的主要原因应来自生活污染源,应加强沿河的生活污水治理。

2、大气环境质量监测方案

(1)空气环境分析与监测因子的筛选

根据国家环境空气质量标准和校园及其周边的大气污染物排放情况来筛选监测项目;我校无特征污染物排放,结合大气污染源调查结果,可选TSP 、PM 10、SO 2、NO 2、CO 等作为大气环境监测项目。

(2)样点的布设

根据污染物的等标排放量,结合校园各环境功能区的要求,及当地的地形、地貌、气象条件,按功能区划分的布点法和网格布点法相结合的方式来布置样点。各监测点名称及相对校园中心点的方位和直线距离可按表4列出,各监测点具体位置应在总平面布置图上注明。

表4 测点名称及相对方位

(3)监测项目和分析方法的确定

根据大气环境监测因子的筛选结果所确定的监测项目,按照《空气和废气监测分析方法》、《环境监测技术规范》和《环境空气质量标准》所规定的样和分析方法执行,具体方法可参考表5。

表5 环境空气监测项目及分析方法

(4)数据整理

监测结果的原始数据要根据有效数字的保留规则正确书写,监测数据的运算要遵循运算规则。在数据处理中,对出现的可疑数据,首先从技术上查明原因,然后再用统计检验处理,经检验验证属离群数据应予剔除,以使测定结果更符合实际。 (5) 大气监测结果及分析

样品集后,按照规定立即进行分析,并对分析结果进行数据处理。

(6). 对校园空气质量评价

将校园的空气环境质量与国家相应标准比较得出结论;分析校园空气环境质量现状。找出出现目前校园空气环境质量现状的原因;预测未来两年内的校园空气环境质量;提出改善校园空气环境质量的建议及措施。

1、声环境质量监测方案 (1)监测布点

监测点设置依据《环境影响评价技术导则——声环境》的技术原则与方法进行。在评价范围内按典型布点法布 4个点进行环境现状监测,其中1监测点为交通噪声监测点, 2、3、4为规划项目边界外一米包络线以内的范围内的噪声监测点。具体监测布点情况如图所示。

3. 校园后梨

4. 夷山大街

2. 黄河大街

1. 东京大道(交通噪声)

(2)监测项目与频率

监测项目:昼夜等效声级 监测频率:连续监测24小时 (3)样方法与分析标准

监测方法按《环境监测技术规范》中规定条件进行,并同步统计车流量。

(4)评价标准及使用仪器

项目区属于以居住和文教机关为主的区域,该地区属于1类噪声功能区,区域环境噪声执行《声环境质量标准》(GB3096-2008)中1类标准,即昼间55dB (A ),夜间45dB (A ) (交通干道两侧执行4a 类区域标准,即昼间70dB (A ),夜间55dB (A )),噪声监测使用的仪器为HS5618A 声级计。

2、声环境质量现状评价

根据环境噪声监测统计结果可以看出,在区域噪声方面,昼间的声环境质量较好,而各监测点的夜间等效连续A 声级Leq 超标率为50%,但是超标范围不是太大,说明目前该项目区内夜间声环境质量遭受到一定程度的破坏。

4. 固体废弃物环境影响评价

施工期产生的固体废弃物包括地基平整产生的弃土和弃石、建筑垃圾及施工人员的生活垃圾。建筑物施工的建筑垃圾在基地被填低洼地处处置,不须外用处置,但需设置适当场地临时堆放并及时清运进行填地处置并进行绿化处理,否则会造成水土流失。

综上所述,施工期固体废弃物产生较少,影响范围主要在施工区,随着施工区的结束,施工期固体废弃物的影响随之消失,因此,只要

加强施工管理,并取相应措施,施工期固体废弃物对环境的不利影响是可以减缓或消除的。

1

参观当地的气象站说说都有什么测量工具分别有什么用途?

模拟温度传感器:实现温度监测与控制的必备工具

温度是我们生活中非常重要的一个参数,尤其是在工业生产、医疗保健等领域,温度的控制更是至关重要。而模拟温度传感器就是一种可以帮助我们实现温度监测与控制的必备工具。

什么是模拟温度传感器?

模拟温度传感器是一种可以将温度转换成电信号输出的传感器。它可以通过测量物体表面的温度来输出相应的电信号,从而实现对温度的监测和控制。

模拟温度传感器的工作原理

模拟温度传感器的工作原理比较简单,它主要是通过测量物体表面的温度来输出相应的电信号。具体来说,它是利用热电效应或热敏电阻效应来测量温度的。

热电效应是指当两种不同金属连接在一起时,如果它们的接触点处有温度差异,那么就会产生电势差。这个电势差与温度差异成正比,因此可以通过测量电势差来确定温度。

热敏电阻效应是指当物体的温度变化时,它的电阻值也会相应地变化。因此,可以通过测量电阻值的变化来确定温度。

模拟温度传感器的操作步骤

模拟温度传感器的操作步骤比较简单,一般包括以下几个步骤:

步骤一:连接传感器

首先,需要将模拟温度传感器与测量仪器或控制器相连接。一般来说,传感器会有两个接口,一个是用来连接电源的,另一个是用来输出信号的。因此,需要将传感器的电源接口连接到电源上,将输出接口连接到测量仪器或控制器上。

步骤二:校准传感器

在使用传感器之前,需要先进行校准。校准的目的是为了确保传感器输出的信号与实际温度之间的误差最小。校准可以通过将传感器放置在已知温度的环境中,然后调整测量仪器或控制器的参数来实现。

步骤三:使用传感器

校准完成后,就可以开始使用传感器了。一般来说,传感器的使用方法会根据具体的应用场景而有所不同。例如,在工业生产中,传感器可以用来监测机器的温度,以确保机器的正常运行;在医疗保健中,传感器可以用来监测患者的体温,以判断患者是否发热等。

模拟温度传感器的应用领域

模拟温度传感器的应用领域非常广泛,包括但不限于以下几个方面:

工业生产

在工业生产中,温度的控制非常重要。例如,在某些生产过程中,需要保持物体的温度在一定的范围内,以确保产品的质量和稳定性。此时,可以使用模拟温度传感器来监测物体的温度,并通过控制器来控制加热或冷却设备的运行,以维持物体的温度在合适的范围内。

医疗保健

在医疗保健中,温度的监测也非常重要。例如,在手术室中,需要对患者的体温进行监测,以确保患者的生命体征正常。此时,可以使用模拟温度传感器来监测患者的体温,并通过监测仪器来实时监测患者的生命体征。

环境监测

在环境监测中,也需要对温度进行监测。例如,在气象站中,需要对气温进行监测,以便预测天气情况。此时,可以使用模拟温度传感器来监测气温,并通过数据集系统来实现数据的收集和分析。

大气环境监测详细资料大全

气象站说说都有什么测量工具分别有云的观测微脉冲激光雷达(MPL)能见度观测

1、激光云高仪:用激光束照射云体的方法,测量激光发射到接收间的时间,从而计算云中反射点的距离,通过对时间积分的方式确定云量。

2、微脉冲激光雷达(MPL):可测量云底、多层云时空分布监测,边界层时空分布监测,气溶胶垂直分布和时空演变。

3、前向散射能见度仪:发射器与接收器在成一定角度和一定距离的两处接收器接收大气的前向散射光通过测量散射光强度,得出散射系数,从而估算出消光系数。

4、透射式能见度仪、通过测量发射器和接收器之间水平空气柱的平均消光系数而算出能见度。

CINRADCC型天气雷达、是中国气象局用于国内气象业务组网探测的新一代C波段全相参多普勒天气雷达。该雷达能够监测400公里范围内的热带气旋、暴雨等大范围强降水目标,有效监测和识别距离大于200公里的龙卷、雹云、冰雹等中小尺度强天气现象,径向风速测量的范围达到大约36米秒。

气象观测作用

气象观测是预报服务的基础观测业务的现代化是气象现代化的重要组成部分随着气象科技和业务的发展气象观测越来越趋向于自动化观测内容越来越丰富。

粉尘检测仪器怎么用

大气环境监测是对大气环境中污染物的浓度,观察、分析其变化和对环境影响的测定过程。大气污染监测是测定大气中污染物的种类及其浓度,观察其时空分布和变化规律。

所监测的分子状污染物主要有硫氧化物、氮氧化物、一氧化碳、臭氧、卤代烃、碳氢化合物等;颗粒状污染物主要有降尘、总悬浮微粒、飘尘及酸沉降。大气质量监测是对某地区大气中的主要污染物进行布点样、分析。通常根据一个地区的规模、大气污染源的分布情况和源强、气象条件、地形地貌等因素,进行规定项目的定期监测。

中国规定的大气质量监测项目有二氧化硫、氮氧化物、总悬浮颗粒物、一氧化碳和降尘。此外,还可根据区域大气污染的不同特点,增加碳氢化合物、总氧化剂、可吸入颗粒物、二氧化氮、氟化物、铅等特征污染物的监测。

基本介绍 中文名 :大气环境监测 外文名 :atmospheric environmental monitoring 学科 :环境科学 样点布设法 :四种 方法标准,监测项目,样点布设,格线布点法,扇形布点法,功能区布点法,气样集,非浓缩样法,浓缩样法, 方法标准 标准编号 标准名称 实施日期 HJ 77.2-2008 环境空气和废气 二恶英类的测定 同位素稀释高分辨气相色谱-高分辨质谱法 2009-4-1 国家环保总局公告 2007年第4号 环境空气品质监测规范(试行) 2007-1-19大气环境监测 HJ/T 75—2007 固定污染源烟气排放连续监测技术规范(试行) 2007-8-1 HJ/T 76—2007 固定污染源烟气排放连续监测系统技术要求及检测方法(试行) 2007-8-1 HJ/T 373-2007 固定污染源监测质量保证与质量控制技术规范(试行) 2008-1-1 HJ/T 3-2007 固定源废气监测技术规范 2008-3-1 HJ/T 398-2007 固定污染源排放烟气黑度的测定 林格曼烟气黑度图法 2008-3-1 HJ/T 400-2007 车内挥发性有机物和醛酮类物质样测定方法 2008-3-1 HJ/T 174-2005 降雨自动样器技术要求及检测方法 2005-5-8 HJ/T 175-2005 降雨自动监测仪技术要求及检测方法 2005-5-8 HJ/T 193-2005  环境空气品质自动监测技术规范 2006-1-1 HJ/T 194-2005  环境空气品质手工监测技术规范 2006-1-1 HJ/T 165-2004 酸沉降监测技术规范 2004-12-9 HJ/T 167-2004 室内环境空气品质监测技术规范 2004-12-9 HJ/T 93-2003 PM10样器技术要求及检测方法 2003-7-1 HJ/T 62-2001 饮食业油烟净化设备技术方法及检测技术规范(试行) 2001-8-1 HJ/T 63.1-2001 大气固定污染源 镍的测定 火焰原子吸收分光光度法 2001-11-1 HJ/T 63.2-2001 大气固定污染源 镍的测定 石墨炉原子吸收分光光度法 2001-11-1 HJ/T 63.3-2001 大气固定污染源 镍的测定 丁二酮肟-正丁醇萃取分光光度法 2001-11-1 HJ/T 64.1-2001 大气固定污染源 镉的测定 火焰原子吸收分光光度法 2001-11-1 HJ/T 64.2-2001 大气固定污染源 镉的测定 石墨炉原子吸收分光光度法 2001-11-1 HJ/T 64.3-2001 大气固定污染源 镉的测定 对-偶氮苯重氮氨基偶氮苯磺酸分光光度法 2001-11-1 HJ/T 65-2001 大气固定污染源 锡的测定 石墨炉原子吸收分光光度法 2001-11-1 HJ/T 66-2001 大气固定污染源 氯苯类化合物的测定 气相色谱法 2001-11-1 HJ/T 67-2001 大气固定污染源 氟化物的测定 离子选择电极法 2001-11-1 HJ/T 68-2001 大气固定污染源 苯胺类的测定 气相色谱法 2001-11-1 HJ/T 69-2001 燃煤锅炉烟尘和二氧化硫排放总量核定技术方法—物料衡算法(试行) 2001-11-1 HJ/T 77-2001 多氯代二苯并二恶英和多氯代二苯并呋喃的测定 同位素稀释高解析度毛细管气相色谱/高分辨质谱法 2002-1-1 HJ/T 54-2000 车用压燃式发动机排气污染物测量方法 2000-9-1 HJ/T 55-2000 大气污染物无组织排放监测技术导则 2001-3-1 HJ/T 56-2000 固定污染源排气中二氧化硫的测定 碘量法 2001-3-1 HJ/T 57-2000 固定污染源排气中二氧化硫的测定 定电位电解法 2001-3-1 GB/T 12301-1999 船舱内非危险货物产生有害气体的检测方法 2000-8-1 HJ/T 27-1999 固定污染源排气中氯化氢的测定 硫氰酸汞分光光度法 2000-1-1 HJ/T 28-1999 固定污染源排气中氰化氢的测定 异烟酸-吡唑啉酮分光光度法 2000-1-1 HJ/T 29-1999 固定污染源排气中铬酸雾的测定 二苯基碳酰二肼分光光度法 2000-1-1 HJ/T 30-1999 固定污染源排气中氯气的测定 甲基橙分光光度法 2000-1-1 HJ/T 31-1999 固定污染源排气中光气的测定 苯胺紫外分光光度法 2000-1-1 HJ/T 32-1999 固定污染源排气中酚类化合物的测定 4-氨基安替比林分光光度法 2000-1-1 HJ/T 33-1999 固定污染源排气中甲醇的测定 气相色谱法 2000-1-1 HJ/T 34-1999 固定污染源排气中氯乙烯的测定 气相色谱法 2000-1-1 HJ/T 35-1999 固定污染源排气中乙醛的测定 气相色谱法 2000-1-1 HJ/T 36-1999 固定污染源排气中丙烯醛的测定 气相色谱法 2000-1-1 HJ/T 37-1999 固定污染源排气中丙烯腈的测定 气相色谱法 2000-1-1 HJ/T 38-1999 固定污染源排气中非甲烷总烃的测定 气相色谱法 2000-1-1 HJ/T 39-1999 固定污染源排气中氯苯类的测定 气相色谱法 2000-1-1 HJ/T 40-1999 固定污染源排气中苯并(a)芘的测定 高效液相色谱法 2000-1-1 HJ/T 41-1999 固定污染源排气中石棉尘的测定 镜检法 2000-1-1 HJ/T 42-1999 固定污染源排气中氮氧化物的测定 紫外分光光度法 2000-1-1 HJ/T 43-1999 固定污染源排气中氮氧化物的测定 盐酸萘乙二胺分光光度法 2000-1-1 HJ/T 44-1999 固定污染源排气中一氧化碳的测定 非色散红外吸收法 2000-1-1 HJ/T 45-1999 固定污染源排气中沥青烟的测定 重量法 2000-1-1 HJ/T 46-1999 定电位电解法二氧化硫测定仪技术条件 2000-1-1 HJ/T 47-1999 烟气样器技术条件 2000-1-1 HJ/T 48-1999 烟尘样器技术条件 2000-1-1 GB 9804-1996 烟度卡标准 19-1-1 GB/T 16157-1996 固定污染源排气中颗粒物测定与气态污染物样方法 1996-3-6 HJ 14-1996  环境空气品质功能区划分原则与技术方法 1996-7-22 GB/T 15432-1995  环境空气 总悬浮颗粒物的测定 重量法 1995-8-1 GB/T 15433-1995 环境空气 氟化物的测定 石灰滤纸.氟离子选择电极法 1995-8-1 GB/T 15434-1995 环境空气 氟化物质量浓度的测定 滤膜.氟离子选择电极法 1995-8-1 GB/T 15435-1995  环境空气 二氧化氮的测定 Saltzman法 1995-8-1 GB/T 15436-1995  环境空气 氮氧化物的测定 Saltzman法 1995-8-1 GB/T 15437-1995  环境空气 臭氧的测定 靛蓝二磺酸钠分光光度法 1995-8-1 GB/T 15438-1995  环境空气 臭氧的测定 紫外光度法 1995-8-1 GB/T 15439-1995  环境空气 苯并[a]芘的测定 高效液相色谱法 1995-8-1 GB/T 15501-1995 空气品质 硝基苯类(一硝基和二硝基化合物)的测定 锌还原-盐酸萘乙二胺分光光度法 1995-8-1 GB/T 15502-1995 空气品质 苯胺类的测定 盐酸萘乙二胺分光光度法 1995-8-1 GB/T 15516-1995  空气品质 甲醛的测定 乙酰丙酮分光光度法 1995-8-1 GB/T 15262-94  环境空气 二氧化硫的测定 甲醛吸收-副玫瑰苯胺分光光度法 1995-6-1 GB/T 15263-94  环境空气 总烃的测定 气相色谱法 1995-6-1 GB/T 15264-94  环境空气 铅的测定 火焰原子吸收分光光度法 1995-6-1 GB/T 15265-94  环境空气 降尘的测定 重量法 1995-6-1 GB/T 14584-93 空气中碘-131的取样与测定 1994-4-1 GB/T 14668-93  空气品质 氨的测定 纳氏试剂比色法 1994-5-1 GB/T 14669-93  空气品质 氨的测定 离子选择电极法 1994-5-1 GB/T 14670-93  空气品质 苯乙烯的测定 气相色谱法 1994-5-1 GB/T 14675-93  空气品质 恶臭的测定 三点比较式臭袋法 1994-3-15 GB/T 14676-93  空气品质 三甲胺的测定 气相色谱法 1994-3-15 GB/T 14677-93  空气品质 甲苯 二甲苯 苯乙烯的测定 气相色谱法 1994-3-15 GB/T 14678-93 空气品质 硫化氢、甲硫醇、甲硫醚和二甲二硫的测定 气相色谱法 1994-3-15 GB/T 14679-93 空气品质 氨的测定 次氯酸钠-水杨酸分光光度法 1994-3-15 GB/T 14680-93  空气品质 二硫化碳的测定 二乙胺分光光度法 1994-3-15 HJ/T 3-93 汽油机动车怠速排气监测仪技术条件 1993-12-1 HJ/T 4-93  柴油车滤纸式烟度计技术条件 1993-1-1 GB 13580.1-92  大气降水样分析方法总则 1993-3-1 GB 13580.2-92  大气降水样品的集与保存 1993-3-1 GB 13580.3-92  大气降水电导率的测定方法 1993-3-1 GB 13580.4-92  大气降水pH值的测定电极法 1993-3-1 GB 13580.5-92 大气降水中氟、氯、亚硝酸盐、硝酸盐、硫酸盐的测定 离子色谱法 1993-3-1 GB 13580.6-92  大气降水中硫酸盐的测定 1993-3-1 GB 13580.7-92 大气降水中亚硝酸盐测定 N-(1-萘基)-乙二胺光度法 1993-3-1 GB 13580.8-92 大气降水中硝酸盐的测定 1993-3-1 GB 13580.9-92 大气降水中氯化物的测定 硫氰酸汞高铁光度法 1993-3-1 GB 13580.10-92 大气降水中氟化物的测定 新氟试剂光度法 1993-3-1 GB 13580.11-92 大气降水中氨盐的测定 1993-3-1 GB 13580.12-92 大气降水中钠、钾的测定 原子吸收分光光度法 1993-3-1 GB 13580.13-92 大气降水中钙、镁的测定 原子吸收分光光度法 1993-3-1 GB/T 13906-92  空气品质 氮氧化物的测定 1993-9-1 HJ/T 1-92  气体参数测量和样的固定位装置 1993-1-1 GB 5468-91 锅炉烟尘测定方法 1992-8-1 GB/T 13268-91 大气 试验粉尘标准样品 黄土尘 1992-8-1 GB/T 13269-91 大气 试验粉尘标准样品 煤飞灰 1992-8-1 GB/T 13270-91 大气 试验粉尘标准样品 模拟大气尘 1992-8-1 GB 8969-88 空气品质 氮氧化物的测定 盐酸萘乙二胺比色法 1988-8-1 GB 80-88 空气品质 二氧化硫的测定 四氯巩盐-盐酸副玫瑰苯胺比色法 1988-8-1 GB 81-88 空气品质 飘尘中苯并(a)芘的测定 乙酰化滤纸层析萤光分光光度法 1988-8-1 GB 9801-88 空气品质 一氧化碳的测定 非分散红外法 1988-12-1 GB/T 6921-86  大气飘尘浓度测量方法 1987-3-1 GB 4920-85 硫酸浓缩尾气硫酸雾的测定 铬酸钡比色法 1985-8-1 GB 4921-85 工业废气 耗氧值和氧化氮的测定 重铬酸钾氧化、萘乙二胺比色法 1985-8-1 监测项目 大气污染物按其存在状态分为粒子状污染物和分子状污染物(亦称气态污染物)两大类。根据污染物的存在状态,大气污染监测项目也分粒状污染物监测和气态污染物监测两大监测项目。其中,粒状污染物监测又分总悬浮微粒监测、飘尘监测、降尘监测和粒状污染物成分监测;气态污染物监测包括二氧化硫、氮氧化物、—氧化碳、光化学氧化剂(O3)、氯化氢、氟化氢、总烃等。总之大气环境监测的监测项目是相当多的,上面只列举了其中的—部分。即使这—部分,也不是任何单位在任何—次监测工作中,都要进行监测。中国在《大气环境质量标准》中,只对总悬浮微粒、飘尘、二氧化硫、氮氧化物、—氧化碳和光化学氧化剂六个项目的限值作了规定,其中飘尘作为参考标准。实际上,在大气环境监测中,总悬浮微粒、二氧化硫、氮氧化物三项是必测项目,其他项目则要根据实际情况和监测目的进行选择。 样点布设 在大气环境监测中,样点的位置和点数的合理布设,是完成监测目的和保证数据具有代表性的重要工序之—。根据污染源分布情况和监测目的不同,样点的布设方法分为 格线布点法、同心圆布点法、扇形布点法和功能区布点法四种。 格线布点法 在监测范围内,污染源较多而且很分散时,用此法布设样点。将整个监测区域画成方形格线,在格线线的结点或方格的中心布设样点,点的数目和间距要根据人力、物力和实际情况决定。 同心圆布点法 有多个较集中的污染源,调查污染源周围各个方向和距离的污染情况时,以污染源为中心,在地面上画出若干个同心圆,再从圆心向周围引出若干条辐射线,同心圆的间距越向外越大例如4:10:20:40,在每个圆上分别设几个样点。 扇形布点法 对单个高架点源,以烟羽流向为轴线,在点源下风方向的地面上定出—个扇形区域作为布点范围,扇形的角度—般约为45。,也可取60。,但不宜大于90。。样点设在扇形面内距点源不同距离的若干条(例如三、四条)弧线上,其中有—条弧线必需处在最大落地浓度出现频率最高的距离上(约10倍于烟囱有效高度处),每条弧线上至少设3个样点,彼此间的间隔为10o~20o. 功能区布点法 将要监测的区域按工业区、居民区、商业区、交通枢纽、文化区、公园等分成若干个功能区,各功能区布设—定数量的监测点。 在实际大气环境监测中,上述几种布点方法的使用,往往以—种方法为主,再用其他方法作必要的调整,以便样点的布设更具有代表性。此外,布点时还应注意:(1)在交通频繁地方布点时,点的位置应离开道路边缘l5~30m;(2)所有样点都应避开林地、高墙等明显的障碍物;(3)在高大建筑物下风侧布点时,点与建筑物的距离为建筑物高度的10倍,无条件时至少要保持2倍以上。 气样集 根据污染物在大气中的存在形态、浓度和分析方法灵敏度的不同,气样集方法分非浓缩样法和浓缩样法两种。 非浓缩样法 亦称直接样法。当待测物在大气中的含量较大或分析方法的灵敏度较高时,用塑胶袋、注射器或其它合适的容器,集少量气样,即可供分析测定使用。 浓缩样法 当待测物在大气中的浓度较低或分析方法的灵敏度不够高时,要使用浓缩样法集气样。使用最广的浓缩样法有过滤法或溶液吸收法。 (1)过滤法。此法用于粒子状污染物的集。样时,将滤纸或有机滤膜夹持在专用的样头上,将样头与流量计、抽气泵连线。启动抽气泵后,气体分子透过滤纸(或滤膜)经流量计计量,再经抽气泵外排,粒状物则被阻留在滤纸或滤膜上,抽气时间越长,滤纸上阻留的粒状物也越多。 (2)溶液吸收法。多用于分子状或蒸气污染物集,捕集待测物质的仪器为吸收管,吸收管中盛有能与待测物质发生作用的吸收液,将吸收管与流量计和抽气泵连线。启动抽气泵,当大气以气泡形式通过盛有吸收管的吸收液时,在气—液界面上,发生待测气体的溶解作用或与吸收液的化学反应,使待测物留在吸收液中。与此同时,气泡内的分子因本身的热运动而迅速扩散到气泡表面,继续发生溶解作用或化学反应,如此继续下去,即完成待测物的吸收过程。显然,通气时间越长,吸收液中待测物的浓度就越大,因此,样过程就是被测物的浓缩过程。浓缩样法除过滤法和溶液吸收法外,还有固体样管阻留法、低温冷凝法等

摘要:粉尘检测仪是用于检测粉尘浓度的仪器,主要分为在线式粉尘检测仪和便携式粉尘检测仪,按测量原理可分为称重法粉尘检测仪、激光粉尘检测仪、静电粉尘检测仪等。粉尘检测仪的应用范围根据种类的不同而有所不同,例如管道粉尘检测仪主要应用于钢铁、冶金、发电等行业,空间粉尘检测仪主要应用于生产车间、隧道等地方。下面一起来了解一下粉尘检测仪器的使用方法吧!一、什么是粉尘检测仪

粉尘检测仪简称粉尘仪,也叫粉尘测量仪或粉尘测试仪,主要用于检测环境空气中的粉尘浓度。工作原理主要有光散射法、β射线、交流静电感应原理;适用于各种研究机构,气象,公共卫生,劳动卫生,大气污染研究等。快速检测仪器主要有5种方法:光散射法、β射线法和微重量天平法、静电感应法、压电天平法。

二、粉尘检测仪的种类有哪些

粉尘检测仪可以分为:在线式粉尘检测仪和便携式粉尘检测仪;在线式粉尘检测仪根据现场使用位置可分为:管道粉尘检测仪、空间粉尘检测仪;便携式粉尘检测仪根据产品系列分为:PC-3A粉尘检测仪、手持式激光粉尘检测仪、CCZ系列粉尘检测仪、LD系列粉尘检测仪等。

从测量原理方面可分为:称重法粉尘检测仪、激光粉尘检测仪、静电粉尘检测仪等。当然还有特殊工况使用的防爆粉尘检测仪,这种粉尘检测仪有在线式的,也有便携式的。

三、各类粉尘检测仪的应用范围

1、管道粉尘检测仪

主要应用于:钢铁、冶金、发电、石油、化工、水泥、矿、食品、制糖、饲料加工等行业气固两相流的粉尘浓度在线测量或布袋检漏。

2、空间粉尘检测仪

主要应用于:生产车间、隧道、施工工地、仓库、堆料场、皮带及风力送料等各种产生粉尘的作业环境。

3、粉尘检测仪PC-3A

主要应用于:一般性生产车间、公共场所、疾病控制中心、卫生监督和环境监测等部门等。

4、手持式激光粉尘检测仪

主要应用于:工矿企业劳动部门防尘监测、卫生检疫检测、环境环保检测,污染源调查等

5、CCZ系列粉尘检测仪

主要应用于:煤矿井下及其它含有爆炸危险性气体的作业场所;

6、LD系列粉尘检测仪

主要应用于:公共场所可吸入颗粒物(PM10)浓度的快速测定,工矿企业生产现场等劳动卫生方面粉尘浓度检测以及环境保护领域可吸入尘浓度的监测,还可用于空气净化器净化效率评价。

四、粉尘检测仪器怎么用

粉尘检测仪器的使用方法主要是通过界面上的各个按键来实现的:

1、测试键:按此键进入测试程序,微电脑按预先设定完成样,运算及数据显示。

2、设定键:此键为设定修正后予确定,可查询当前粉尘和粒子数据。

3、校正键:按此键仪器进入校正状态。此键为仪器送检时由检测人员进行操作或在客服技术人员的指导下进行操作。

4、复位健:初始化。

5、存储键:按此键显示当前存储区数据。