1.数字农业包括哪些建设内容

2.雷电是怎么产生的

3.风电厂工作有、、、

4.化学学科进展 论文

5.信息化战争未来发展趋势是什么样的?

五要素气象传感器_气象观测传感器

2006至2020年,物联网应用从闭环、碎片化走向开放、规模化,智慧城市、工业物联网、车联网等率先突破。中国物联网行业规模不断提升,行业规模保持高速增长,江苏、浙江、广东省行业规模均超千亿元。

截至到2019年,我国物联网市场规模已发展到1.5万亿元。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

近年来,我国出台各类政策大力发展物联网行业,不少地方也出台物联网专项规划、行动方案和发展意见,从土地使用、基础设施配套、税收优惠、核心技术和应用领域等多个方面为物联网产业的发展提供政策支持。在工业自动控制、环境保护、医疗卫生、公共安全等领域开展了一系列应用试点和示范,并取得了初步进展。

目前我国物联网行业规模已达万亿元。中国物联网行业规模超预期增长,网络建设和应用推广成效突出。在网络强国、新基建等国家战略的推动下,中国加快推动IPv6、NB-IoT、5G等网络建设,消费物联网和产业物联网逐步开始规模化应用,5G、车联网等领域发展取得突破。

政策推动我国物联网高速发展

自2013年《物联网发展专项行动》印发以来,国家鼓励应用物联网技术来促进生产生活和社会管理方式向智能化、精细化、网络化方向转变,对于提高国民经济和社会生活信息化水平,提升社会管理和公共服务水平,带动相关学科发展和技术创新能力增强,推动产业结构调整和发展方式转变具有重要意义。

以数字化、网络化、智能化为本质特征的第四次工业革命正在兴起。物联网作为新一代信息技术与制造业深度融合的产物,通过对人、机、物的全面互联,构建起全要素、全产业链、全价值链全面连接的新型生产制造和服务体系,是数字化转型的实现途径,是实现新旧动能转换的关键力量。

我国物联网行业呈高速增长状态 未来将有更广阔的空间

自2013年以来我国物联网行业规模保持高速增长,增速一直维持在15%以上,江苏、浙江、广东省行业规模均超千亿元。中国通信工业协会的数据表明,随着物联网信息处理和应用服务等产业的发展,中国物联网行业规模已经从2013年的4896亿元增长至2019年的1.5万亿元。

虽然我国物联网发展显著,但我国物联网行业仍处于成长期的早中期阶段。目前中国物联网及相关企业超过3万家,其中中小企业占比超过85%,创新活力突出,对产业发展推动作用巨大。

物联网作为中国新一代信息技术自主创新突破的重点方向,蕴含着巨大的创新空间,在芯片、传感器、近距离传输、海量数据处理以及综合集成、应用等领域,创新活动日趋活跃,创新要素不断积聚。

物联网在各行各业的应用不断深化,将催生大量的新技术、新产品、新应用、新模式。未来巨大的市场需求将为物联网带来难得的发展机遇和广阔的发展空间。

在政策、经济、社会、技术等因素的驱动下,2020年GSMA移动经济发展报告预测,2019-2025年复合增长率为9%左右,2020年中国物联网行业规模目标1.6亿元,按照目前物联网行业的发展态势,十三五规划的目标有望超预期完成;预计到2025年,中国物联网行业规模将超过2.7万亿元。

未来物联网行业将向着多元方向发展

标准化是物联网发展面临的最大挑战之一,它是希望在早期主导市场的行业领导者之间的一场斗争。目前我国物联网行业百家争鸣,还未有一个统一的标准出现。因此在未来可能通过不断竞争将会出现限数量的供应商主导市场,类似于现在使用的Windows、Mac和Linux操作系统。

合规化同样是当下物联网面临的问题之一,特别是数据隐私问题。目前数据隐私已成为网络社会的一个关键词,各种用户数据泄露或被滥用的频发,特别是Facebook的丑闻引发了全球担忧。

因此在未来,我国各种立法和监管机构将提出更加严格的用户数据保护规定,,用户的敏感数据可能会随着时间的推移而受到更严格的监管。

安全化是指预防物联网软件遭受网络黑客攻击,在未来,以安全为重点的物联网设施将受到更多的关注,特别是某些特定的基础行业,如医疗健康、安全安防、金融等领域。

多重技术推动物联网技术创新

从技术创新趋势来看,物联网行业发展的内生动力正在不断增强。连接技术不断突破,NB-Iot、eMTC、Lora等低功耗广域网全球商用化进程不断加速;物联网平台迅速增长,服务支撑能力迅速提升;

区块链、边缘计算、人工智能等新技术题材不断注入物联网,为物联网带来新的创新活力。受技术和产业成熟度的综合驱动,物联网呈现“边缘的智能化、连接的泛在化、服务的平台化、数据的延伸化”等特点。

—— 以上数据来源于前瞻产业研究院《中国物联网行业应用领域市场需求与投资预测分析报告》

数字农业包括哪些建设内容

诞生于科幻之中一样,人们对机器人充满了幻想。也许正是由于机器人定义的模糊,才给了人们充分的想象和创造空间。操作型机器人:能自动控制,可重复编程,多功能,有几个自由度,可固定或运动,用于关自动化系统中。程控型机器人:按预先要求的顺序及条件,依次控制机器人的机械动作。示教再现型机器人:通过引导或其它方式,先教会机器人动作,输入工作程序,机器人则自动重复进行作业。数控型机器人:不必使机器人动作,通过数值、语言等对机器人进行示教,机器人根据示教后的信息进行作业。感觉控制型机器人:利用传感器获取的信息控制机器人的动作。适应控制型机器人:机器人能适应环境的变化,控制其自身的行动。学习控制型机器人:机器人能“体会”工作的经验,具有一定的学习功能,并将所“学”的经验用于工作中。智能机器人:以人工智能决定其行动的人。我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、机器人、器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、器人、微操作机器人等。目前,国际上的机器人学者,从应用环境出发将机器人也分为两类:制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。空中机器人又叫无人机,近年来在器人家族中,无人机是科研活动最活跃、技术进步最大、研究及购经费投入最多、实战经验最丰富的领域。80多年来,世界无人机的发展基本上是以美国为主线向前推进的,无论从技术水平还是无人机的种类和数量来看,美国均居世界之首位。 机器人品种篇“别动队”无人机纵观无人机发展的历史,可以说现代战争是推动无人机发展的动力。而无人机对现代战争的影响也越来越大。一次和二次世界大战期间,尽管出现并使用了无人机,但由于技术水平低下,无人机并未发挥重大作用。朝鲜战争中美国使用了无人侦察机和攻击机,不过数量有限。在随后的越南战争、中东战争中无人机已成为必不可少的武器系统。而在海湾战争、波黑战争及科索沃战争中无人机更成了主要的侦察机种。法国“红隼”无人机越南战争期间美国空军损失惨重,被击落飞机2500架,飞行员死亡5000多名,美国国内舆论哗然。为此美国空军较多地使用了无人机。如“水牛猎手”无人机在北越上空执行任务2500多次,超低空拍摄照片,损伤率仅4%。AQM-34Q型147火蜂无人机飞行500多次,进行电子窃听、电台干扰、抛撒金属箔条及为有人飞机开辟通道等。高空无人侦察机 在1982年的贝卡谷地之战中,以色列军队通过空中侦察发现。叙利亚在贝卡谷地集中了大量部队。6月9日,以军出动美制E-2C“鹰眼”预警飞机对叙军进行监视,同时每天出动“侦察兵”及“猛犬”等无人机70多架次,对叙军的防空阵地、机场进行反复侦察,并将拍摄的图像传送给预警飞机和地面指挥部。这样,以军准确地查明了叙军雷达的位置,接着发射“狼”式反雷达导弹,摧毁了叙军不少的雷达、导弹及自行高炮,迫使叙军的雷达不敢开机,为以军有人飞机攻击目标创造了条件。鬼怪式无人机1991年爆发了海湾战争,美军首先面对的一个问题就是要在茫茫的沙海中找到伊拉克隐藏的飞毛腿导弹发射器。如果用有人侦察机,就必须在大漠上空往返飞行,长时间暴露于伊拉克军队的高射火力之下,极其危险。为此,无人机成了美军空中侦察的主力。在整个海湾战争期间,“先锋”无人机是美军使用最多的无人机种,美军在海湾地区共部署了6个先锋无人机连,总共出动了522架次,飞行时间达1640小时。那时,不论白天还是黑夜,每天总有一架先锋无人机在海湾上空飞行。 为了摧毁伊军在沿海修筑的坚固的防御工事,2月4日密苏里号战舰乘夜驶至近海区,先锋号无人机由它的甲板上起飞,用红外侦察仪拍摄了地面目标的图像并传送给指挥中心。几分钟后,战舰上的406毫米的舰炮开始轰击目标,同时无人机不断地为舰炮进行校射。之后威斯康星号战舰接替了密苏里号,如此连续炮轰了三天,使伊军的炮兵阵地、雷达网、指挥通信枢纽遭到彻底破坏。在海湾战争期间,仅从两艘战列舰上起飞的先锋无人机就有151架次,飞行了530多个小时,完成了目标搜索、战场警戒、海上拦截及海军炮火支援等任务。 发射Brevel无人机 在海湾战争中,先锋无人机成了美国陆军部队的开路先锋。它为陆军第7军进行空中侦察,拍摄了大量的伊军坦克、指挥中心、及导弹发射阵地的图像,并传送给直升机部队,接着美军就出动“阿帕奇”攻击型直升机对目标进行攻击,必要时还可呼唤炮兵部队进行火力支援。先锋机的生存能力很强,在319架次的飞行中,仅有一架被击中,有4~5架由于电磁干扰而失事。除美军外,英、法、加拿大也都出动了无人机。如法国的“幼鹿”师装备有一个“马尔特”无人机排。当法军深入伊境内作战时,首先派无人机侦察敌情,根据侦察到的情况,法军躲过了伊军的坦克及炮兵阵地。1995年波黑战争中,因部队急需,“捕食者”无人机很快就被运往前线。在北约空袭塞族部队的补给线、库、指挥中心时,“捕食者”发挥了重要的作用。它首先进行侦察,发现目标后引导有人飞机进行攻击,然后再进行战果评估。它还为联合国维和部队提供波黑境内主要公路上军车移动的情况,以判断各方是否遵守了和平协议。美军因而把“捕食者”称作“战场上的低空卫星”。其实卫星只能提供战场上的瞬间图像,而无人机可以在战场上空长时间盘旋逗留,因而能够提供战场的连续实时图像,无人机还比使用卫星便宜得多。1999年3月24日,以美国为首的北约打着“维护”的幌子对南联盟开始了狂轰滥炸,爆发了震惊世界的“科索沃战争”。在持续78天的轰炸过程中,北约共出动飞机3.2万架次,投入舰艇40多艘,扔下1.3万吨,造成了二战以来欧洲空前的浩劫。南联盟多山、多森林的地形以及多阴雨天的气候条件,大大影响了北约侦察卫星及高空侦察机的侦察效果,塞军的防空火力又很猛,有人侦察机不敢低飞,致使北约空军无法识别及攻击云层下面的目标。为了减少人员的伤亡,北约大量使用了无人机。科索沃战争是世界局部战争中使用无人机数量最多、无人机发挥作用最大的战争。无人机尽管飞得较慢,飞行高度较低,但它体积小,雷达及红外特征较小,隐蔽性好,不易被击中,适于进行中低空侦察,可以看清卫星及有人侦察机看不清的目标。在科索沃战争中,美国、德国、法国及英国总共出动了6种不同类型的无人机约200多架,它们有:美国空军的“捕食者”(Predator)、陆军的“猎人”(Hunter)及海军的“先锋”(Pioneer);德国的CL-289;法国的“红隼”(Crecerelles)、 “猎人”,以及英国的“不死鸟”(Phoenix)等无人机。无人机在科索沃战争中主要完成了以下一些任务:中低空侦察及战场监视,电子干扰,战果评估,目标定位,气象资料搜集,散发传单以及营救飞行员等。科索沃战争不仅大大提高了无人机在战争中的地位,而且引起了各国对无人机的重视。美国参议院武装部队委员会要求,10年内军方应准备足够数量的无人系统,使低空攻击机中有三分之一是无人机;15年内,地面战车中应有三分之一是无人系统。这并不是要用无人系统代替飞行员及有人飞机,而是用它们补充有人飞机的能力,以便在高风险的任务中尽量少用飞行员。无人机的发展必将推动现代战争理论和无人战争体系的发展。 机器警察 所谓地面器人是指在地面上使用的机器人系统,它们不仅在和平时期可以帮助民警排除、完成要地保安任务,在战时还可以代替士兵执行扫雷、侦察和攻击等各种任务,今天美、英、德、法、日等国均已研制出多种型号的地面器人。 英国的“手推车”机器人 在西方国家中,恐怖活动始终是个令当局头疼的问题。英国由于,饱受爆炸物的威胁,因而早在60年代就研制成功排爆机器人。英国研制的履带式“手推车”及“超级手推车”排爆机器人,已向50多个国家的军警机构售出了800台以上。最近英国又将手推车机器人加以优化,研制出土拨鼠及野牛两种遥控电动排爆机器人,英国工程兵在波黑及科索沃都用它们探测及处理爆炸物。土拨鼠重35公斤,在桅杆上装有两台摄像机。野牛重210公斤,可携带100公斤负载。两者均用无线电控制系统,遥控距离约1公里。 “土拨鼠”和“野牛”排爆机器人 除了恐怖分子安放的外,在世界上许多战乱国家中,到处都散布着未爆炸的各种。例如,海湾战争后的科威特,就像一座随时可能爆炸的库。在伊科边境一万多平方公里的地区内,有16个国家制造的25万颗地雷,85万发炮弹,以及多国部队投下的布雷弹及子母弹的2500万颗,其中至少有20%没有爆炸。而且直到现在,在许多国家中甚至还残留有一次大战和二次大战中未爆炸的和地雷。因此,爆炸物处理机器人的需求量是很大的。 排除爆炸物机器人有轮式的及履带式的,它们一般体积不大,转向灵活,便于在狭窄的地方工作,操作人员可以在几百米到几公里以外通过无线电或光缆控制其活动。机器人车上一般装有多台彩色CCD摄像机用来对爆炸物进行观察;一个多自由度机械手,用它的手爪或夹钳可将爆炸物的引信或拧下来,并把爆炸物运走;车上还装有,利用激光指示器瞄准后,它可把爆炸物的定时装置及引爆装置击毁;有的机器人还装有高压水枪,可以切割爆炸物。 德国的排爆机器人 在法国,空军、陆军和警察署都购买了Cybernetics公司研制的TRS200中型排爆机器人。DM公司研制的RM35机器人也被巴黎机场管理局选中。德国驻波黑的维和部队则装备了Telerob公司的MV4系列机器人。我国沈阳自动化所研制的PXJ-2机器人也加入了公安部队的行列。 美国Remotec公司的Andros系列机器人受到各国军警部门的欢迎,白宫及国会大厦的警察局都购买了这种机器人。在南非总统选举之前,警方购买了四台AndrosVIA型机器人,它们在选举过程中总共执行了100多次任务。 Andros机器人可用于小型随机爆炸物的处理,它是美国空军客机及客车上使用的唯一的机器人。海湾战争后,美国海军也曾用这种机器人在沙特阿拉伯和科威特的空军基地清理地雷及未爆炸的。美国空军还派出5台Andros机器人前往科索沃,用于爆炸物及子炮弹的清理。空军每个现役排爆小队及航空救援中心都装备有一台Andros VI。 我国研制的排爆机器人 排爆机器人不仅可以排除,利用它的侦察传感器还可监视犯罪分子的活动。监视人员可以在远处对犯罪分子昼夜进行观察,监听他们的谈话,不必暴露自己就可对情况了如指掌。 1993年初,在美国发生了韦科庄园教案,为了弄清教徒们的活动,联邦调查局使用了两种机器人。一种是Remotec公司的AndrosVA型和Andros MarkVIA型机器人,另一种是RST公司研制的STV机器人。STV是一辆6轮遥控车,用无线电及光缆通信。车上有一个可升高到4.5米的支架 ,上面装有彩色立体摄像机、昼用瞄准具、微光夜视瞄具、双耳音频探测器、化学探测器、卫星定位系统、目标跟踪用的前视红外传感器等。该车仅需一名操作人员,遥控距离达10公里。在这次行动出动了3台STV,操作人员遥控机器人行驶到距庄园548米的地方停下来,升起车上的支架,利用摄像机和红外探测器向窗内窥探,联邦调查局的官员们围着荧光屏观察传感器发回的图像,可以把屋里的活动看得一清二楚。 机器人指挥 其实并不是人们不想给机器人一个完整的定义,自机器人诞生之日起人们就不断地尝试着说明到底什么是机器人。但随着机器人技术的飞速发展和信息时代的到来,机器人所涵盖的内容越来越丰富,机器人的定义也不断充实和创新。 1886年法国作家利尔亚当在他的《未来夏娃》中将外表像人的机器起名为“安德罗丁”(android),它由4部分组成: 1,生命系统(平衡、步行、发声、身体摆动、感觉、表情、调节运动等); 2,造型解质(关节能自由运动的金属覆盖体,一种盔甲); 3,人造肌肉(在上述盔甲上有肉体、静脉、性别等身体的各种形态); 4,人造皮肤(含有肤色、机理、轮廓、头发、视觉、牙齿、手爪等)。 1920年捷克作家卡雷尔·卡佩克发表了科幻剧本《罗萨姆的万能机器人》。在剧本中,卡佩克把捷克语“Robota”写成了“Robot”,“Robota”是奴隶的意思。该剧预告了机器人的发展对人类社会的悲剧性影响,引起了大家的广泛关注,被当成了机器人一词的起源。在该剧中,机器人按照其主人的命令默默地工作,没有感觉和感情,以呆板的方式从事繁重的劳动。后来,罗萨姆公司取得了成功,使机器人具有了感情,导致机器人的应用部门迅速增加。在工厂和家务劳动中,机器人成了必不可少的成员。机器人发觉人类十分自私和不公正,终于造反了,机器人的体能和智能都非常优异,因此消灭了人类。 但是机器人不知道如何制造它们自己,认为它们自己很快就会灭绝,所以它们开始寻找人类的幸存者,但没有结果。最后,一对感知能力优于其它机器人的男女机器人相爱了。这时机器人进化为人类,世界又起死回生了。 卡佩克提出的是机器人的安全、感知和自我繁殖问题。科学技术的进步很可能引发人类不希望出现的问题。虽然科幻世界只是一种想象,但人类社会将可能面临这种现实。 为了防止机器人伤害人类,科幻作家阿西莫夫于1940年提出了“机器人三原则”: 1,机器人不应伤害人类; 2,机器人应遵守人类的命令,与第一条违背的命令除外; 3,机器人应能保护自己,与第一条相抵触者除外。 这是给机器人赋予的性纲领。机器人学术界一直将这三原则作为机器人开发的准则。 在1967年日本召开的第一届机器人学术会议上,就提出了两个有代表性的定义。一是森政弘与合田周平提出的:“机器人是一种具有移动性、个体性、智能性、通用性、半机械半人性、自动性、奴隶性等7个特征的柔性机器”。从这一定义出发,森政弘又提出了用自动性、智能性、个体性、半机械半人性、作业性、通用性、信息性、柔性、有限性、移动性等10个特性来表示机器人的形象。另一个是加藤一郎提出的具有如下3个条件的机器称为机器人: 1,具有脑、手、脚等三要素的个体; 2,具有非接触传感器(用眼、耳接受远方信息)和接触传感器; 3,具有平衡觉和固有觉的传感器。 礼仪机器人 该定义强调了机器人应当仿人的含义,即它靠手进行作业,靠脚实现移动,由脑来完成统一指挥的作用。非接触传感器和接触传感器相当于人的五官,使机器人能够识别外界环境,而平衡觉和固有觉则是机器人感知本身状态所不可缺少的传感器。这里描述的不是工业机器人而是自主机器人。 机器人的定义是多种多样的,其原因是它具有一定的模糊性。动物一般具有上述这些要素,所以在把机器人理解为仿人机器的同时,也可以广义地把机器人理解为仿动物的机器。 1988年法国的埃斯皮奥将机器人定义为:“机器人学是指设计能根据传感器信息实现预先规划好的作业系统,并以此系统的使用方法作为研究对象”。 1987年国际标准化组织对工业机器人进行了定义:“工业机器人是一种具有自动控制的操作和移动功能,能完成各种作业的可编程操作机。” 我国科学家对机器人的定义是:“机器人是一种自动化的机器,所不同的是这种机器具备一些与人或生物相似的智能能力,如感知能力、规划能力、动作能力和协同能力,是一种具有高度灵活性的自动化机器”。在研究和开发未知及不确定环境下作业的机器人的过程中,人们逐步认识到机器人技术的本质是感知、决策、行动和交互技术的结合。随着人们对机器人技术智能化本质认识的加深,机器人技术开始源源不断地向人类活动的各个领域渗透。结合这些领域的应用特点,人们发展了各式各样的具有感知、决策、行动和交互能力的特种机器人和各种智能机器,如移动机器人、微机器人、水下机器人、医疗机器人、器人、空中空间机器人、机器人等。对不同任务和特殊环境的适应性,也是机器人与一般自动化装备的重要区别。这些机器人从外观上已远远脱离了最初仿人型机器人和工业机器人所具有的形状,更加符合各种不同应用领域的特殊要求,其功能和智能程度也大大增强,从而为机器人技术开辟出更加广阔的发展空间。 中国工程院院长宋健指出:“机器人学的进步和应用是20世纪自动控制最有说服力的成就,是当代最高意义上的自动化”。机器人技术综合了多学科的发展成果,代表了高技术的发展前沿,它在人类生活应用领域的不断扩大正引起国际上重新认识机器人技术的作用和影响。 我国的机器人专家从应用环境出发,将机器人分为两大类,即工业机器人和特种机器人。所谓工业机器人就是面向工业领域的多关节机械手或多自由度机器人。而特种机器人则是除工业机器人之外的、用于非制造业并服务于人类的各种先进机器人,包括:服务机器人、水下机器人、机器人、器人、农业机器人、机器人化机器等。在特种机器人中,有些分支发展很快,有独立成体系的趋势,如服务机器人、水下机器人、器人、微操作机器人等。目前,国际上的机器人学者,从应用环境出发将机器人也分为两类:制造环境下的工业机器人和非制造环境下的服务与仿人型机器人,这和我国的分类是一致的。 古代机器人 机器人一词的出现和世界上第一台工业机器人的问世都是近几十年的事。然而人们对机器人的幻想与追求却已有3000多年的历史。人类希望制造一种像人一样的机器,以便代替人类完成各种工作。 机器马车 西周时期,我国的能工巧匠偃师就研制出了能歌善舞的伶人,这是我国最早记载的机器人。 春秋后期,我国著名的木匠鲁班,在机械方面也是一位发明家,据《墨经》记载,他曾制造过一只木鸟,能在空中飞行“三日不下”,体现了我国劳动人民的聪明智慧。 公元前2世纪,亚历山大时代的古希腊人发明了最原始的机器人——自动机。它是以水、空气和蒸汽压力为动力的会动的雕像,它可以自己开门,还可以借助蒸汽唱歌。 1800年前的汉代,大科学家张衡不仅发明了地动仪,而且发明了计里鼓车。计里鼓车每行一里,车上木人击鼓一下,每行十里击钟一下。 后汉三国时期,蜀国丞相诸葛亮成功地创造出了“木牛流马”,并用其运送军粮,支援前方战争。 1662年,日本的竹田近江利用钟表技术发明了自动机器玩偶,并在大阪的道顿堀演出。 1738年,法国天才技师杰克·戴·瓦克逊发明了一只机器鸭,它会嘎嘎叫,会游泳和喝水,还会进食和排泄。瓦克逊的本意是想把生物的功能加以机械化而进行医学上的分析。 写字机器人 在当时的自动玩偶中,最杰出的要数瑞士的钟表匠杰克·道罗斯和他的儿子利·路易·道罗斯。1773年,他们连续推出了自动书写玩偶、自动演奏玩偶等,他们创造的自动玩偶是利用齿轮和发条原理而制成的。它们有的拿着画笔和颜色绘画,有的拿着鹅毛蘸墨水写字,结构巧妙,服装华丽,在欧洲风靡一时。由于当时技术条件的限制,这些玩偶其实是身高一米的巨型玩具。现在保留下来的最早的机器人是瑞士努萨蒂尔历史博物馆里的少女玩偶,它制作于二百年前,两只手的十个手指可以按动风琴的琴键而弹奏音乐,现在还定期演奏供参观者欣赏,展示了古代人的智慧。 19世纪中叶自动玩偶分为2个流派,即科学幻想派和机械制作派,并各自在文学艺术和近代技术中找到了自己的位置。1831年歌德发表了《浮士德》,塑造了人造人“荷蒙克鲁斯”;1870年霍夫曼出版了以自动玩偶为主角的作品《葛蓓莉娅》;1883年科洛迪的《木偶奇遇记》问世;1886年《未来的夏娃》问世。在机械实物制造方面,1893年摩尔制造了“蒸汽人”,“蒸汽人”靠蒸汽驱动双腿沿圆周走动。 进入20世纪后,机器人的研究与开发得到了更多人的关心与支持,一些适用化的机器人相继问世,1927年美国西屋公司工程师温兹利制造了第一个机器人“电报箱”,并在纽约举行的世界博览会上展出。它是一个电动机器人,装有无线电发报机,可以回答一些问题,但该机器人不能走动。1959年第一台工业机器人(可编程、圆坐标)在美国诞生,开创了机器人发展的新纪元 104 | 评论

雷电是怎么产生的

请参考2018年数字农业建设试点项目申报指南

数字农业 是指将遥感、地理信息系统、全球定位系统、计算机技术、通讯和网络技术、自动化技术等高新技术与地理学、农学、生态学、植物生理学、土壤学等基础学科有机地结合起来。以实现对农作物生长、发育状况、病虫害、水肥状况以及相应的环境进行定期信息获取,生成动态空间信息系统,对农业生产中的现象,达到合理利用农业,降低生产成本,改善生态环境,提高农作物产品和质量的目的。

大田种植数字农业建设试点。 重点集成推广大田物联网测控、遥感监测、智能化精准作业、基于北斗系统的农机物联网等技术。

畜禽养殖数字农业建设试点。 重点集成推广养殖环境监控、畜禽体征监测、精准饲喂、智能挤奶捡蛋、废弃物自动处理、网络联合选育等技术。。

水产养殖数字农业建设试点。 重点集成推广应用水体环境实时监控、饵料自动精准投喂、水产类病害监测预警、循环水装备控制、网箱升降控制等技术。

园艺作物数字农业建设试点。 重点集成推广果菜茶花种植环境监测和智能控制、智能催芽育苗、水肥一体化智能灌溉、果蔬产品智能分级分选等技术。

申报条件 数字农业建设试点项目以县为单位组织实施,由县(市、区)级农业(渔业)局或其下属法人单位作为建设单位牵头申报。试点项目实施主体为区域内具有数字农业建设需求的农民合作社、家庭农场、农业产业化龙头企业等新型经营主体。

资金投入及比例。 中央财政对符合条件的数字农业建设试点县市予以投资补助。每个数字农业建设试点项目总投资应在2000万元以上,其中,中央预算内投资不超过2000万元,且不超过项目总投资的50%;项目实施主体自筹不低于项目总投资40%,并提供出资承诺书。

可研报告及证明材料。 可行性研究报告的编制,上报可行性研究报告时附带相应材料复印件或说明材料,包括:实施主体法人证书或营业执照复印件;地市及以上农业产业化龙头企业、农民合作社等新型农业经营主体证明;实施主体与有数字农业建设试点项目技术支撑能力的单位签订的具有实质性内容的合作协议;实施主体近三年审计报告;土地落实的相关证明文件;规划预选址意见书;自筹资金承诺函及银行存款证明。

风电厂工作有、、、

雷电起因一般被认为是云层内的各种微粒因为碰撞摩擦而积累电荷,当电荷的量达到一定的水平,等效于云层间或者云层与大地之间的电压达到或超过某个特定的值时,会因为局部电场强度达到或超过当时条件下空气的电击穿强度从而引起放电。

空气中的电力经过放电作用急速地将空气加热、膨胀,因膨胀而被压缩成等离子,再而产生了闪电的特殊构件雷(冲击波的声音)。

雷电的电流很大,其峰值一般能达到几万安培,但是其持续的时间很短,一般只有几十微秒。所以雷电电流的能量不如想象的那么巨大。不过雷电电流的功率很大,对建筑物和其他设备尤其是电器设备的破坏十分巨大,所以需要安装避雷针或避雷器等以在一定程度上保护这些建筑和设备的安全。

扩展资料

雷电活动的一般条件

(1)地质条件:土壤电阻率的相对值较小时,就有利于电荷很快聚集。局部电阻率较小的地方容易受雷击;电阻率突变处和地下有导电矿藏处容易受雷击;实际上接地网电阻率,会增大雷击概率。

(2)地形条件:山谷走向与风向一致,风口或顺风的河谷容易受雷击;山岳靠近湖、海的山坡被雷击的概率较大。

(3)地物条件:有利于雷雨云与大地建立良好的放电通道。空旷地中的孤立建筑物,建筑群中的高耸建筑物容易受雷击;大树、接收天线、山区输电线路容易受雷击;符合尖端放电的特性,基站铁塔建成后也会增大雷击的概率。

雷电分直击雷、电磁脉冲、球形雷、云闪四种。其中直击雷和球形雷都会对人和建筑造成危害,而电磁脉冲主要影响电子设备,主要是受感应作用所致;云闪由于是在两块云之间或一块云的两边发生,所以对人类危害最小。

百度百科-雷电

化学学科进展 论文

近年,中国长江三峡工程开发总公司、中国水利水电科学研究院、华东勘测设计研究院和河海大学共同承担了国家十一五科技支撑“大功率风电机组研制与示范”项目的十一课题“近海风电场选址及风电机组运行、维护技术开发”的研究任务。根据任务书的要求,三峡总公司拟在江苏响水近海海域建设示范风电场。风是风力发电的源动力,风况资料是风力发电场规划、设计和建设的第一要素。因此为进一步掌握江苏近海区域的风情况,为在江苏响水近海海域建设示范风电场提供第一手的原始资料,三峡总公司委托北京中水科水电科技开发有限公司在江苏响水建设海上测风塔,进行现场测风工作,并为将来的海上风电场建设进行相关的基础性研究工作。

详细科学技术内容

近海风电场海上测风与试验研究工作,主要包含以下研究内容:

(1)海上测风研究:进行1个滩涂测风塔、2个海上测风塔(三个测风塔高度均为70m)的选址、勘探、设计、安装与运行维护,并开展1.5年的测风数据资料集与研究评估。

(2)地质勘测与桩基测试试验:对塔基现场进行地质踏勘、资料搜集,拟定勘察,承担地质钻探并进行现场技术指导、数据处理、样品分析、图件绘制、技术报告编写等;开展海上桩基的沉桩过程测试,获取不同地层、不同深度的锤击数~贯入度的关系,综合研究分析桩基的承载力,高应变承载力检测与承载力的对应关系等。

(3)海况条件研究:通过试验、勘测、资料分析,研究响水近海水文情况(包括对浅海环境、海浪、海流、潮位等的研究),结合海上测风塔的建设施工和测风情况,研究海况条件对海上风评估和风电场建设的影响。

(4)对工艺方法、标准等的研究与总结:对勘探、测试、试验、施工、运维中的各种工艺方法、经验成果进行总结;对有关标准、规程、规范等进行初步研究。

(5)其他资料的分析整理:江苏响水一带沿海现有的气象、海洋、地形、地质资料和陆上风电场实测资料的收集、整理分析。

(6)建设1个滩涂测风塔、2个海上测风塔:滩涂测风塔用拉锚式等截面等边三角形轻型钢管焊接结构,塔架及拉锚纤绳用独立混凝土基础,塔高70m。海上测风塔用钢管桩基础(桩径为600mm,壁厚16mm,桩长50m,四边形布置且呈1:7向外倾斜)、四柱渐变式桁架塔体结构,塔体与桩基通过钢承台连接,塔架底部为边长3.2m的正方形截面,塔架顶部为边长0.82m的正方形截面,塔高70m,全塔架及桩基础均用分部位防腐。滩涂测风塔、海上测风塔均在10m、25m、40m、50m、60m、70m位置处安装风速传感器,每层2个;10m、50m、70m位置处安装风向传感器,每层1个。2#测风塔安装海洋资料观测设备1套。

发明及创新点

本项目克服了没有类似工程可以借鉴、现场资料欠缺等困难,结合以前的研究成果,在以下几个方面进行了创新,并取得了良好的效果。

(1)创新性地实现了海上施工向陆上转化的设计理念

与国内已有的海上测风塔用高桩现浇混凝土承台的设计理念不同,响水海上测风塔用了钢承台的结构型式。与常规的混凝土承台相比,可以不进行海上立模、绑钢筋、混凝土浇筑和养护等工序,钢承台可以在陆地加工完成,可节省施工时间和减少大型船舶(海上混凝土搅拌船、大型起重船等)的使用,大大减少海上作业的工程量、减少海上施工的时间和节省施工成本,具有明显的优势。

(2)用了桩体与承台利用高强灌浆料连接技术

钢承台结构型式对连接段要求很高,通过室内试验和大量计算,连接型式用了高强灌浆材料灌注为主的连接方式。经规范方法计算和有限元方法校核以及现场运行考验,连接段整体受力较好,能满足不同环境荷载的受力要求。研究的灌浆连接结构获得了国家实用新型专利。

(3)提出了海上桩基承载力检测的一种可行方法

与陆地桩基相比,海上桩基检测存在两大问题:①海上条件恶劣,受风浪影响很大,进行静载试验难度大、成本高。②进行高应变锤击时需要大型船舶,进行复打成本高、组织困难。在海上测风塔建设过程中,充分利用滩涂风电场类似地层条件,用静载试验、埋设渗压计和不同时段的高应变检测,初步推断出:在该地质条件下,初打时的高应变检测承载力是桩基最终承载力的60%左右,可以利用打桩时进行高应变检测,以此承载力计算桩基最终承载力。

(4)海上风评估方法研究手段完备,成果可信度高

①实验手段上,用一塔两套测风设备,设置海洋观测设备;

②资料丰富度方面,布置了2座海上测风塔、1座滩涂测风塔,加上滩涂的5座测风塔以及气象站近30年的气象资料,该区域内的测风塔密度高,测风数据及环境数据齐全、完整;

③研究方法上,用数理统计、比较研究和数值模拟等多种手段,并根据计算模型独立开发了计算程序。

本项目利用这些实测数据开展了环境因素对测风数据的影响、风速与潮位的对应关系、海面粗糙程度与浪高之间的对应关系以及海陆风对比等项目的研究,其研究方法、技术路线和研究内容均为国内首次用。研究成果可信度高,并已用于海上示范风机的设计中。

(5)开展了测风手段的拓展性研究

根据风评估的特点和海上施工的难度,提出了可移动式测风塔的概念,并完成了移动式测风塔的结构设计、就位固定技术、浮运移动等关键技术的研究,为海上测风塔提供了一种新的结构型式,可进一步减少测风成本,具有较好的推广前景。

与当前国内外同类研究、同类技术的综合比较

本项目建设的江苏响水近海测风塔是江苏近海地区第1、2座(我国第3、4座)真正意义上的海上测风塔,目前国内所建的6座海上测风塔仅有本项目的响水海上测风塔用了钢承台结构和相应的灌浆连接方式,该结构大大减少了海上施工时间和对大型海上施工设备的依赖,不仅可以推广到海上测风塔的应用,也可以推广到海上风机的结构设计中。经技术查新:海上测风塔的钢承台结构形式、承台与桩基用水泥基高强灌浆料连接、可移动式测风塔的结构设计等技术特征在国内文献均未见提及。

本项目利用实测数据开展的环境因素对测风数据的影响、风速与潮位的对应关系、海面粗糙程度与浪高之间的对应关系以及海陆风对比等项目的研究,其研究方法、技术路线和研究内容均为国内首次用。

成果应用情况及社会经济效益

本项目于2007年4月完成测风塔选址、初设,5月完成海上勘探,6月完成施工图设计,8月进行海上桩基施工、塔架吊装和仪器安装,2008年3月测风数据传回,2008年7月海洋观测数据传回,截止到2009年10月,已完成1.5年的测风数据收集和评估、1年的海洋观测数据收集和评估以及2年的运行维护工作。

该项目研究成果为海上风电场建设提供了详实的风数据、海洋数据、地质数据和可供借鉴的施工经验,目前长江新能源公司已在该区域建设了1台2MW近海试验风机,三峡集团公司正在进行容量为200MW的近海风电场的可研设计。

成果转化、推广或产业化方面还需帮助解决的问题

目前国内《海上风电开发建设管理暂行办法》已经颁布施行,海上测风工作将逐步展开。为使本项目的研究成果能够推广应用,应加大宣传力度。 风电场的工作流程:风向风速检测、当班当中和调度保持联系、开机发电、巡查记录、设备检查、润滑保养、故障处理、变压升压、配电仪表监护调节、并网送电、发电量统计。

信息化战争未来发展趋势是什么样的?

本人从智网上找的 有PDF格式 这是从上面转下来的

统磁体以单原子或离子为构件,三维磁有序化主要来自通过化学键传递的磁相互作用,其制备用冶金学或其一、引 言他物理方法;而分子磁体以分子或离子为构件,在临界 作为一种新型的软材料,分子基材料(molecule2based温度以下的三维磁有序化主要来源于分子间的相互作materials)在近年来材料科学的研究中已成为化学家、物用,其制备用常规的有机或无机化学合成方法.由于理学家以及生物学家非常重视的新兴科学领域[1].分子在分子磁体中没有伸展的离子键、共价键和金属键,因基材料的定义是,通过分子或带电分子组合出主要具有而很容易溶于常规的有机溶剂,从而很容易得到配合物分子框架结构的有用物质.顾名思义,分子基磁性材料的单晶,有利于进行磁性与晶体结构的相关性研究,有(molecule2based magnetic materials) ,通称分子磁性材料,利于对磁性机制的理论研究.作为磁性材料,分子铁磁是具有磁学物理特征的分子基材料.当然,分子磁性材体具有体积小、相对密度轻、结构多样化、易于复合加工料是涉及化学、物理、材料和生命科学等诸多学科的新成型等优点,有可能作为制作航天器、微波吸收隐身、电兴交叉研究领域.主要研究具有磁性、磁性与光学或电磁屏蔽和信息存储的材料.导等物理性能相结合分子体系的设计、合成.我们认为, 分子磁性研究始于理论探索.早在 1963 年McCo2分子磁性材料是在结构上以超分子化学为主要特点的、nnel[2]就提出有机化合物可能存在铁磁性,并提出了分在微观上以分子磁交换为主要性质的、具有宏观磁学特子间铁磁偶合的机制.1967 年,他又提出了涉及从激发征并可能应用的一类物质.态到基态电子转移的分子离子之间产生稳定铁磁偶合 分子铁磁体是具有铁磁性质的分子化合物,它在临的方法[3].同年,Wickman[4]在贝尔实验室合成了第一个界温度(Tc)下具有自发磁化等特点.分子磁体有别于传分子铁磁体.之后,科学家们相继报道了一些类铁磁性统的不易溶解的金属、金属合金或金属氧化物磁体.传质的磁性化合物,但直到1986年前,这些合成的磁性化·15 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. ://.cnki.net专题综述Ziran Zazhi Vol.24 No.1合物没有表现出硬铁磁所具有的磁滞特征.1986 年,材料理论的精确预言和计算是相当困难的,而且,分子Miller等人[5]将二茂铁衍生物[Fe(Cp3)2](Cp3为五甲基磁性材料中包含的原子和分子基团更多,空间结构的基环戊二稀)与四氰基乙烯自由基(TCNE)经电荷转移合对称性更复杂,局部的磁交换的途径也体现出多样性,成了第一个分子铁磁体[Fe(Cp3)2]+[TCNE] ,其转换温使得目前的研究还处于实验经验的积累和定性的解释度 T上.尽管如此,科学家们对分子磁交换的机制进行了大c=4.8 K.与此同时,Kahn 等人[6]报道了具有铁磁性的MnCu(pbaOH)·(H量的研究,提出了许多近似理论模型,并基于这些模型2O)3分子化合物.从此,分子磁体的研究引起了人们的广泛关注,分子基磁性材料也应和大量的实验数据,在磁性与结构的关系研究中取得了运而生.一定的进展.对于一些对称性较高的体系,根据自旋相 开始,由于分子间的磁相互作用较弱,分子磁体的互作用的 Hamilton可由量子力学求出磁化率的解析形转换温度式T,然后根据实验数据计算出磁偶合系数 J 值,探索随c通常远远低于室温,难于达到应用的要求.结构的变化关系.对于对称性较差及组成较为复杂的体但是,第一个室温分子磁体V(TCNE)2·xCH2Cl2在1991系,自旋 Hamilton 的解析解很难求出.此时可用 Monte年由Manriquez[7]报道出后,虽然是一个不稳定的电荷转Carlo方法对物理过程进行模拟,求出磁偶合系数 J[10].移钒配合物,但近年来,分子磁性的研究已取得了令人 根据产生磁性的具体类型,磁交换机制主要通过以鼓舞的进展,Verdauger[8,9]报道了 Tc高达340 K的稳定下途径来实现:类普鲁士蓝的分子铁磁体. (1) 磁轨道正交 根据 Kahn等人的分子轨道理论,顺磁离子A与B之间的磁相互作用(J)由两部分贡献组二、分子磁性中的物理基础成,即铁磁贡献和反铁磁贡献,J = JF+ JAF.当A中未成对电子所占据的磁轨道与B中未成对电子所占据的磁 分子磁体的磁性来源于分子中具有未成对电子离轨道互相重叠时,它们之间的相互作用为反铁磁偶合,子之间的偶合,这些偶合相互作用既来自分子内,也可重叠积分越大,反铁磁偶合越强;当A与B中未成对电来自于分子间.分子内的自旋- 自旋相互作用往往通过子所占据的磁轨道正交时,它们之间的相互作用为铁磁“化学桥”来实现磁超相互作用.所以,分子磁性材料兼偶合.如图(1)中(a)、(b)所示.如果铁磁偶合与反铁磁偶具磁偶极- 偶极相互作用和超相互作用,故该类材料的合同时存在,通常反铁磁偶合强于铁磁偶合,因此只有磁性比常规的无机磁性材料表现出更丰富多彩的磁学当 JAF为零时,A与B间才为铁磁偶合.如在CsNiⅡ[CrⅢ性质.(CN)6]·2H2O[9]中,CrⅢ的磁轨道具有t2g对称性,而NiⅡ 根据铁磁体理论,要使材料产生铁磁性,首先体系的磁轨道具有e的原子或离子必须是顺磁性的g对称性,二者互为正交轨道,因而呈现,其次它们间的相互作用铁磁性偶合( T是铁磁性的.对于分子磁性材料,一个分子内往往包含c=90 K).当磁轨道正交时,铁磁偶合的一个或多个顺磁中心,即自旋载体,按照 Heisenberg 理大小依赖于轨道间的距离.论,两个自旋载体之间的磁交换作用可用以下等效Ham2 (2) 异金属反铁磁偶合 对于两个具有不同自旋的ilton算符来表示:顺磁金属离子,SA≠SB若A与B间存在磁相互作用,有^H两种情况:当A与B 间的磁相互作用为短程铁磁偶合ex= - 2J^S1^S2(1)其中时,总自旋 SJ 为交换积分,表示两个自旋载体间磁相互作用的T= SA+ SB;当A与B间的磁相互作用为反类型和大小. J 为正值时为铁磁性偶合,自旋平行的状态铁磁偶合时,总自旋 Sr=| SA- SB| (如图1中(c) (d)所为基态;J 为负值时为反铁磁性偶合,自旋反平行为基示).顺磁离子A和B间的磁相互作用大多为反铁磁偶态.如对分子磁性材料:A- X- B 体系(A,B 为顺磁中合.当为反铁磁偶合时,若 Sr= SB,则 Sr=0;若 SA与心,X为化学桥) ,X作为超交换的媒介使A和B发生磁SB不相等,则有净自旋,当在转换温度以下,净自旋有性偶合,设 SA= SB=1P2,则当反铁磁偶合时,分子基态序排列,使体系呈现亚铁磁性.因此,利用异金属之间反用单重态和三重态的能量差来表示:J = E铁磁偶合是构建高自旋分子的另一条有效途径.如CsMnS- ET. 磁相互作用研究的目的在于了解磁交换的机理,寻[Cr(CN)6] ,Mn2+的自旋为 SA=5P2,而Cr3+的自旋为 SB找磁性与结构之间的关系,并反过来指导分子磁性材料=3P2,二者之间产生反铁磁偶合,净自旋 ST= SA- SB的设计和合成.和通常的磁性材料一样,对分子基磁性=1P2,在低于转换温度( Tc=90 K)时,配合物表现为亚1·6 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. ://.cnki.net自 然 杂 志 24卷1期专题综述铁磁性[11].以分为下面几类:1. 有机自由基分子磁体 化合物中不含任何带磁性的金属离子,大多由 C,H,O,N四种有机元素组成的磁体材料.其自旋载体为有机自由基,如氮氧自由基.McConnel 早在1963 年就提出有机化合物内存在铁磁偶合的机制[2].制备方法用有机合成方法.由于它们具有有机材料特殊的物理、化学图性能,因而是更具应用前景的分子铁磁材料.但直到今1 相同自旋之间的偶合:(a) 铁磁偶合;(b) 反铁磁偶合; 不同自旋之间的偶合:(c) 铁磁偶合;(d) 亚铁磁偶合日,纯有机分子磁体的转换温度仍极低,和有机超导材料一样,在小于50 K的低温区.日本科学家在这方面的 (3) 电荷转移 对给体- 受体电荷转移类配合物,工作做得很好.目前,得到广泛研究并进行了结构标定如[FeCp32]+[TCNE]-,基态时,[FeCp32]+的自旋为1P2,的有机铁磁体主要有氮氧自由基及其衍生物[14]、C60[TCNE]-的自旋也为1P2.在这样一个系统中,由于电荷(TDAE)(TDAE为四(二甲胺基) - 1,2- 亚乙基)[15]等.转移,形成激发三重态.在[FeCp32]+与[TCNE]-交替排列形成的链中,阳离子与前后两个[TCNE]-等距离,它2. 金属- 有机自由基分子磁体的e2g电子可向前后两个[TCNE]转移,形成 S =1的激发 化合物中含有带磁性的过渡金属或稀土金属离子,态.基态激发态混合后,降低了体系能量,使自旋取向沿同时也含有机自由基的基团,故有两种以上的自旋载体着一条链形成.如果每个链的取向都是平行的,且链间存在,并发生相互作用,由这种金属或金属配合物与自和链内[FeCp32]+与[TCNE]-位置相当,那么e2g电子可由基两种自旋载体组装的化合物,也可以构建分子铁磁以在链间传递,从而进一步稳定了体系,导致了相邻链体.其中有些是有机金属与自由基形成的电荷 转移盐的自旋平行取向,产生宏观的铁磁性现象[12].体系. (4) 有机自由基与多自由基 自从1991 年日本京 美国的Miller和Epstein教授在这个体系中作出了卓都大学的 Takahashi 等[13]成功地合成了基于 C、H、O、N越的贡献,首先他们发现了[M(Cp32][TCNZ](Z=Q或四种元素组成的有机铁磁体,使人们认识到含有氮氧自E,TCNE为四氰基乙烯,TCNQ为四氰代对苯醌二甲烷,M由基的有机化合物也是制备分子铁磁体的一条有效途(C3p)2为环戊二烯金属衍生物)[12]. 如,[Fe(Cp3)2]径.氮氧自由基与金属配合物形成的磁偶合体系已成为[TCNZ]为一变磁体(它有一反铁磁基态,但在临界外场分子铁磁体研究领域的一个重要方面.为1500Oe时,转变为具有高磁矩的类铁磁态) ,它由[Fe(Cp3)2]+阳离子与[TCNQ]-阴离子交替排列形成平行三、分子基磁性材料的分子设计和目的一维链,每一个离子均有一未成对的电子自旋[16].磁 前热点研究体系有序要求在整体上的自旋偶合,因此,直径较小的[TC2NE]-将比[TCNQ]-有较大的电子密度,预期将有利于 分子磁体的设计与合成实质上是一个在化学反应自旋偶合.实际情况证明了这一点,[Fe(Cp3中分子自组装的过程.选择合适的高自旋载体(砖头) ,2)]+[TC2NE]-由阳离子与阴离子交替排列构成一维链,在4.8 K这可以是金属离子或具有自旋不为零的有机自由基,通以下表现为磁有序过非磁性的有机配体等桥梁基团作为构筑元件(石灰),在 T=2 K时,其矫顽力为1 000Oe,,超过了传统磁存储材料的值[17]以一定的方式无限长地联接起来.为了提高磁有序温度,,如通过脱溶剂法处理、改变抗衡离子或改变配体等途径他们又开创了M[TCNE],形成分子内部间x·yS(M=V,Mn,Fe,Ni,Co;S为的强相互作用和单元间弱相互作用的超分子结构.通过溶剂分子) 另外一类电荷转换盐分子磁体的研究工调控无限分子P分子单元(或链、层)间磁相互作用的类型作[18].并发现第一个室温以上的分子磁体V[TCNE]x·和大小,组装成低维或三维铁磁体.但就目前来说,除选yCH2Cl2,其 Tc高达400 K.值得一提的是,在常温下它显择合适的高自旋载体和桥联配体外,控制分子在晶格中示出矫顽力超过无机磁体,薄膜材料也在积极的研究堆砌方式也十分重要.中,已接近应用.遗憾的是,这类化合物的结构至今仍是 按照自旋载体和产生的磁性不同,分子磁性材料可不清楚.近年来,Miller等对[MnⅢTPP]+[TCNE]-(H2TPP·17 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. ://.cnki.net专题综述Ziran Zazhi Vol.24 No.1为中心四苯卟啉)类分子磁体也进行了广泛的研究.有物在低温下,能够被光激发而发生从铁磁体到顺磁体的关的综述论文可参考文献[12]和[19].可逆转跃迁,是非常有实际应用的特性. Mn( Ⅱ) - 氮氧自由基链状配合物Mn(hfac)2(NIT2 草酸根桥联的双核或异双核金属配位物分子磁体Me)[20](hfac是六氟乙酰丙酮,NITMe 为2- 甲基- 4,4,一直吸引着人们的注意.具有D3对称性的[MⅢ(ox)3]3-5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物自由基,Tc是一个非常有用的建造单元.它在3个不同的方向上都=7. 8 K) 及 Cu ( Ⅱ) 自由基配合物 [Cu (hfac)2]有“钩子”,能轻而易举地把别的金属离子拉进来而形成(NIT[21]多维的金属离子交替排列,从而成为二维或三维分子磁pPy)2(NITpPy为2- (2’吡啶 - 4,4,5,5- 四甲基咪唑啉- 1- 氧基- 3- 氧化物)是另一类的金属- 有体.如A[MⅡMⅢCr(ox)3](A =N(n - C4H9)+4、N( n -机自由基分子磁体.近年来,这类分子铁磁体的研究进C6H5)+4等) ,当MⅢ=Cr( Ⅲ) ,MⅡ为Mn(Ⅱ) ,Cu( Ⅱ) ,Co展很大,已由单自由基- 金属配合物扩展到多自由基-(Ⅱ) ,Fe( Ⅱ)和Ni( Ⅱ)时,其 Tc分别为6,7,10,12,14金属配合物.由于多自由基较单自由基有更多的自旋中K[26];当MⅢ=Fe( Ⅲ) ,MⅡ为Fe(Ⅱ) ,Ni(Ⅱ) ,Co( Ⅱ)时,心和配位方式,并且与金属配位更易形成多维结构的优Tc=30~50 K[27].点,多自由基—金属配位物的研究已成为分子磁体研究 草胺酸根合铜[Cu(opba)]2-、[Cu(pba)]2-及[Cu的热点之一[22].(pbaOH)]2-含有未配位基团,可作为形成多核配合物的前体.此前体具有两个桥基,易与Mn2+、Fe2+等阳离子3.金属配合物的分子磁体形成异双金属链而构成一维链状配合物,链内通过铁磁 金属配合物分子磁体是目前研究得最广泛、最深入或反铁磁偶合得到铁磁链或亚铁磁链,链间的铁磁或反的一类分子磁体,其自旋载体为过渡金属.在其构建单铁磁偶合导致材料的宏观磁性表现为铁磁或反铁磁性.元中,可以形成单核、双核及多核配合物.由这些高自旋这类分子磁体转变温度低,如由双草酰胺桥联的锰铜配的配位物进行适当的分子组装,可以形成一维、二维及合物MnCu(pbaOH)(H2O)3,Tc=4.6 K[28].三维分子磁体,可以形成链状或层状结构.根据桥联配 除此之外,近十年来化学家们对由三叠氮(N3)配体位体的不同,这类分子磁体主要包括草胺酸类、草酰胺桥联的多维化合物产生了极大的兴趣,这是因为三叠氮类、草酸根类、二肟类、氰根类等几种类型.配体主要以两种方式连接金属离子,见图2,分别对应反 报告的第一个这种类型的分子磁体是中间自旋 S =铁磁偶合和铁磁偶合,便于对分子磁性的设计.单独由3P2的FeⅢ(S2CNEt2)2Cl[4],在温度为2.46 K以下表现为三叠氮配体桥联或混入其他有机桥联配体,可构成一磁有序,但无磁滞现象.接着便是基于双金属的低温铁维,二维和三维的配位聚合物,形成独特的磁学性质并磁有序材料[CrⅢ(NH3)6]3+[FeⅢCl6]3-( Tc=0.66 K和在一定温度下构成分子磁体[29].这方面,我国的南京大亚铁磁有序材料[CrⅢ(NH3)6]3+[CrⅢ(CN)6]3-( Tc=2.学和南开大学也做出了很好的工作[30,31].85 K) ,它们同样不具有磁滞现象[23,24]. 近年来,由法国科学家Verdaguer发现普鲁士蓝类配合物所表现出的较高的转换温度,大的矫顽力,使得普鲁士蓝类磁性配合物越来越吸引人们的注意[25].普鲁士蓝类分子磁体是基于构筑元件M(CN)k-6与简单金属离子通过氰根桥联的类双金属配合物,双金属离子均处于八面体配位环境,并通过氰桥连接成三维网络.其组成形式为 Mk[M’(CN)6]l·nH2O 或 AMk[M’(CN)6]l·nH2O(M和M’为不同的顺磁性,化合物为铁磁体,如图2 三叠氮配体和金属离子以及对应的磁交换Cu3[Cr(CN)6]2·15H2O( Tc= 66 K) 、Cu3[Fe(CN)6]2·12H4. 单分子磁体(Single2Molecular Magnets)2O(Tc=14 K) 、Ni3[Cr(CN)6]2·14H2O( Tc=23 K)均为铁磁体.若两个金属离子磁轨道重叠,它们之间的磁 以上情况都是分子被连接成聚合物后产生非常强偶合为反铁磁性,化合物为反铁磁体或亚铁磁体,如的分子间相互作用.从另一个角度,若分子间相互作用(Net4)0.5Mn1.25[V(CN)6]·2H2O( Tc=230 K) 、CrⅡ3[CrⅢ很小可忽略,则分子被隔离成一个个独立的磁分子.当(CN)6]2·10H2O( Tc=240 K)[25].有价值的是,这类化合分子内含有多个自旋离子中心并发生磁偶合时,则总分1·8 ·? 1994-2008 China Academic Journal Electronic Publishing House. All rights reserved. ://.cnki.net自 然 杂 志 24卷1期专题综述子的磁矩决定于磁偶合后的最低能态,这时就可能出现域.如在本文中提到的:转换温度超过室温的分子基铁基态为自旋数较高的稳定态,在磁场的作用下产生准连磁和亚铁磁体材料的发现;具有高自旋的多核配合物在续的激发态能级.所以整个分子的磁矩在外场下,沿外低温下表现出磁性的单分子磁体的发现;在室温以上具场的方向偏转时需要克服一个较大的势垒,这种势垒来有大的磁滞现象的自旋交叉配合物的发现;分子基磁体自零场分裂的磁各向异性.有时也称这种现象为自旋阻的光磁、热磁效应;以及分子基磁体的 GMR、CMR效应挫(spinfrustration)[32].这种依赖于外磁场的双稳态(bist2等.所有这些成果都预示着分子磁性材料光明的未来.ability)被看作是新一代信息材料应用的基础.目前所发 相比于传统的磁性材料,由于广泛的化学选择性,现的单分子磁体主要包括Mn12和Mn14离子簇、Fe8离子可以从分子级别上对分子磁性材料进行修饰和改良;作簇和 V为磁性材料4离子簇等三类,如基态为 S = 10 的 Mn12O12,分子铁磁体具有体积小、相对密度小、能耗(O[33]小及结构的多样化等优点,其制备的方法大多为常规的2CMe)16(H2O)4.有意义的是,当这种单分子体积大到一定值时,可被认为是一种尺寸单一的可磁化的纳化学方法,便于做成各种形态的产品,所体现的性质有米材料,具有不可估量的应用前景.些是传统的磁性材料不可替代的.已发现这类新物质可能成为各类高科技材料,特别是新一代的信息存储5. 自旋交叉配合物材料. 众所周知 当然,当配合物分子内的自旋离子中心减少到,作为一种新生的材料,有很多方面仍需要进仅一个时一步研究和改进,这也是我国科学家在基础研究和应用,分子间的相互作用又很小,配合物显示出独立离子的特性科学走向世界前列的良机.可以预见,在未来的发展中,,为近似理想的顺磁性.具有3d4- 3d7电子配置的过渡金属配合物分子基磁性材料将可能在:①高,在八面体配位结构下,电子Tc温度的分子磁体;②在五个d电子轨道上的排布,可能会受到配位场e提高材料的物理稳定性;③透明的绝缘磁体;④易变、易g和t2g加工的分子磁体轨道之间的能隙Δ大小的影响;⑤和其他物理性能结合的复合磁性材,当Δ平均电子对能p相料近时;⑥超硬和超软磁体; ⑦液体磁体等方面着重探索和,化合物的自旋态可能由于某些外界条件的微扰,得到发展可呈现高自旋态与低自旋态的交叉转变[34].(.最典型的是2000年8月29日收到)一些Fe(Ⅱ)配合物,发生高自旋态5T1 Alivisatos A. P. ,Barbara P. F. ,Castleman A. W. ,et. al. Adv. Ma22(S =2,顺磁性)与ters. ,1998;10:12低自旋态1A1(S =0,抗磁性)的转变,伴随自旋相变,化2 McConnel H.M. J. Chem. Phys. ,1963;39:1910合物可能有结构甚至和颜色的变化.有一些的转变温度3 McConnel H.M. Proc. R.A. Welch Found. Chem. Res.1967;11:144还在常温区,如[Fe(Htrz)4 Wickman H.H. ,Trozzolo A.M. ,Williams H.J. ,et. al. Phys. Rev. ,3- 3x(NH2trz)3x](ClO4)2·H2O1967;155:563(trz=1,2,4 类) ,在常温下从紫色(低自旋)随温度5 Miller J.S. ,Calabrese J.C. ,Epstein A.J. ,et. al. J. Chem. Soc. ,上升转为白色(高自旋).成为另一种新的可利用的双稳Chem. Commun,1986;10266 Pei Y. ,Verdauger M. ,Kahn O. ,et al. J. Am. Chem. Soc. ,1986;态现象[35].年,Decurtins等人首次观察到光诱导自108:7428旋交叉效应[36],并随后在低温下利用光对自旋态的激发7 ManriquezJ.M. ,Yee G.T. ,Mclean R.S. ,et al. Science,1991;252:和调控进行了深入研究,期望能用作纳秒级的快速光开14158 FerlayS. ,Mallsah T. ,Ouahes R. ,et al. Nature,1995;378:701关和存储器[34].我国在自旋交叉研究方面也取得了可喜9 Mallah T. ,Thiebaut S. ,VerdaguerM. ,et al. Science,1993;262:1554的成绩[37],如发现温度回滞宽度近55 K的自旋交叉化10 Zhong Z.J. ,You X. Z. ,Chen T. Y. Annual Sci Rept—suppl of J of合物[Fe(dpp)Nanjing Univ. ,Eng.Series, Nov19942(NCS)2]py(dpp =二吡嗪(3,2,2-,3-)邻11 Griebler W.D. ,Babel D.Z. ,NaturforschB. Anorg. Chem. ,1982;37B菲罗啉,py=吡啶)[38],而且首次发现在快速冷却下仍保(7) :832持高自旋亚稳态,实现了不通过光诱导也能得到低温下12 MillerJ.S. ,EpsteinA.J.Angew. Chem. Int. Ed. ,1994;33:38513 Takahashi M. ,Turek P. ,NakazawaM. ,et al. PhysLett,1991;67:746的双稳态[39].14 Chiarelli R. ,NovakM.A. ,Rassat A. ,et al. Nature,1993;363:14715 Allemand P.M. ,Khemani K.C. ,Koch A. ,et al. Science,1991;254:301四、展 望16 MillerJ.S. ,ZhangJ.H. ,Reiff W.M. ,et al. J. Phys. Chem. ,1987;91:4344 分子基磁性材料作为一种新型的材料,近十年来,17 MillerJ.S. ,CalabressJ.C. ,DixonD.A. ,et. al. J. Am. Chem. Soc. ,1987;109:769在化学家和物理学家的努力下,在很多方面已经取得了18 Zhou P. ,LongS.M. ,MillerJ.S. Phys.Lett.A,1993;181:71突破性的进展,迅速发展成为一门材料学科的前沿领19 MillerJ.S. Inorg. Chem. ,2000;39:4392

估计效果很不好 如果想要的话,留个邮箱,给你发过去

现代信息技术和新军事革命的蓬勃发展,必然带来信息化战争的演变和快速推进,这已被信息化战争短短几十年的发展史所证明。以下对信息化战争的发展趋势作一些预测。

一、 信息力量的竞争将愈演愈烈

随着信息化社会的发展,信息作为战略的地位将更高,围绕信息获取、信息化军队建设和占领信息优势高地的竞争将愈演愈烈。各国将竟相投入更多的资金进行社会信息化基础设施的建设,竭力保持本国在信息化建设方面的优势。新制式的超宽带信息高速公路将不断推进,网络进攻和网络防御的能力将同步提高,信息技术将愈加主导政治、经济、金融、环境、文化、生活、生产等所有领域。在军事领域,各国将加大信息化军队建设的力度和速度,不断革新军队的武器装备、军事理论、编制体制、人员培训等,尽量拉大本国与它国军队信息化能力的距离。黑客部队、天军、网军、机器人军团、世界舰队、太空星军、斩首部队、媒体部队、隐身部队、精细手术刀部队、机器昆虫等新型部队将层出不穷,迷你型、全能型、智能型等信息化部队不断创新。各国在信息力量、信息方面的竞争将白热化。

二、 作战方式和战争形态将不断变化

随着信息技术的迅猛发展、新军事变革的深入和政治战略需求的变化,信息化战争将以前所未有的速度催生新的作战方法。战略心理战、网络系统战、全元总体战、太空绞杀战、掏心战、瘫痪战、战、至盲战、点穴战、无人战、精微战、间隙战等等作战方式接踵而至。同时,新作战模式相继登场,信息化战争频繁“变脸”,也使其整体战争形态不断调整和演变。战争的规模将趋小,以天、小时和分计算时间的战争可能一再发生;物资、能源的消耗战将逐步让位给物质、能源的控制战;战争状态与和平状态的转化,以及军事人员和非军事人员的转换将有新的表现;围绕信息展开的争夺战将日趋激烈。信息化战争形态的演变将是迅速和明显的。

三、 人类的战争能力将持续提升

信息化战争的发展使战争体系的效能不断提高,人类的战争能力呈现持续提升的趋势。

(一)战场感知力持续提升

信息化战争发展以来,由于雷达、声纳、地面传感器、侦察飞机、侦察卫星以及装载在武器平台上的观瞄仪、测距机、告警机、望远镜、夜视仪、火控雷达等大量先进电子侦察监视技术的运用,战场感知能力已经有了很大的提高。但随着信息化战争的发展,战场感知力还会持续提升。一个从声频、电频到光频,从水下、地面到太空的全频谱、全方位、全时空的侦察监视体系,将出现在战场上,各种目标的性状和变化都可能处在严密的监控之中。对于处于信息优势的一方,战场将更加透明。

(二)战场反应速度持续加快

现代侦察监视技术和指挥控制技术使战场的反应速度明显提高。目前美国预警卫星在对方导弹发射后约3—4分钟就能将信息传送到国家指挥中心。火器在跟踪目标、计算射击诸元、气象修正、偏差修正等方面都达到了一体化、电子化、自动化,射击准备时间已缩短到约60秒钟,发射反应时间为5—8秒,如法制“西北风”地空导 弹的反应时间为5秒。一个由计算机控制的火 炮控制系统,对同时发现的不同方向的30多个目标,只需90多秒钟就能将其全部摧毁,这比15年前的战场反应时间缩短了2个小时。情报、通信、指挥、控制、兵器和信息处理一体化的自动化指挥体系构成了数字化的战场,战争系统整体反应速度也加快了,在2003年的伊拉克战争中,从发现目标到实施攻击的过程已缩短到几分钟时间。远距离快速投送技术使战场能量快速流动,战略轰 炸机的航程和战略导 弹射程均达10000千米以上,许多兵器都可以在24小时内到达地球的另一面作战。

随着信息化战争的不断发展,战场的反应速度还会不断加快,“即时化”可能真正出现。未来可能出现的网络中心战将进一步提高战争的反映速度。高超音速的飞行器绕地球一圈只需两个多小时;密布于太空的无数个微型卫星将对地球上的任何一点实施即时打击;高速巡航导 弹、多国联合舰队、激光武器的运用将促进战场的反应灵敏度速度。在未来,C4ISR系统必将有更大的飞跃,战争系统的整体反应速度会不断提升。

(三)精确打击能力持续增强

信息技术的应用已使突击兵器的命中概率达到80%以上,基本实现了“指那打那”。导弹和精确制导 弹 药成为战场攻击武器的主角。二战时飞机投掷炸 弹的误差近千米,而在伊拉克战争中这种误差已缩小到几米。海湾战争中,美军一枚“斯拉姆”空面导 弹从90千米以外攻击伊拉克一个发电厂时,第一发导弹在发电厂的外墙上打了1个洞,第二发导 弹从这个洞口飞入炸毁了内部设施。随着进行信息技术的发展,信息化战争中的精确打击能力将不断增强。目标的识别、选定和摧毁将更加精准,打击误差可能缩小到厘米,甚至更小。人们可能对上万千米外的一台电脑、一部手机、一名将军、一只侦察苍蝇或者某个士兵的眼睛实施精确打击。精确打击不仅限于物质层面,还将涉及人的精神、心理层面,将可对某个人或某些具有共同特性的群体实施定性、定量、精微准确地心理突击和精神手术。

(四)作战空间和时间持续延伸

信息技术的运用使战争的时空得到了延伸。目前人类的战场已经扩展到陆、海、空、天以及电磁的空间,作战时间也得到延伸。海湾战争中多国部队使用了30多颗卫星、3000多架飞机、500余枚巡航导 弹、3000多辆装甲车辆、6艘航空母舰、数十艘水面舰船和潜艇、几百架电子战飞机、30多个地面监听站和20余个侦察营,呈现出的是一幅光、电、磁、声交织,陆、海、空、天相溶的多维战场画面。随着信息技术的发展,这种延伸将不断扩大。人类战场可能进入浩淼的太空深处或某一细胞之中;海沟、极地、地下处处都可能发生搏杀;电磁战将渗入更多的空间和贯穿在更多的时间之中。18世纪以前10万人军队的作战能力仅达到1平方千米;海湾战争时10万人军队的作战能力已达及70余万平方千米的战场。而在未来的信息化战争中,信息化军队的作战能力将达到更大的空间和时间。随着信息技术全面渗透人类社会生活的各个方面,信息化战争的战场将在敌对双方甚至第三方的政治、经济、文化、环境、信息、能源、网络等领域全面展开。虚拟战场与真实战场结合,军事战场与经济战场结合,军事专职人员与普通民众的军事行动结合,战场的起始和终结的时间也可能趋于模糊。

(五)战场效能持续提高

信息化战争发展到今天,已经使战争效能成倍地增长。二战时, 4000多架次飞机才能摧毁一个铁路枢纽,而现在只需几枚激光制导炸 弹就可。越南战争中,美军先以600架次飞机和普通炸 弹200多吨攻击越南的一座桥梁,但没有成功。后改用激光制导炸 弹,仅出动12架次飞机就炸毁了这座桥梁。阿根廷也曾用一枚价值百万美元的“飞鱼”导 弹击沉了英军一艘价值2亿美元的“谢菲尔德”号驱逐舰。

未来的信息化战争,战场效能必将持续提高。信息技术将使战争要素得到最优化组合,战争力量将在最关键的地点、时机、方向上,以最佳攻击手段、攻击强度和最小损耗,对与政治目标最密切关联的关键目标,实行精确、集中、有效地能量释放,从而产生了很高的战场效能。战争手段的多元化、空间的多维化和行动的一体化,增加了战争能量释放的通道、针对性和一致性,使战争能量的单位时间流通量大幅提升,减少了无效发散,提高了效率,达到了一种战争能量在极短的时间内集中、有效地流向最关键最重要空间的战场境界。

人类的战争能力的快速提升,使信息化战争中的对抗更趋激烈。参战人员在知识、能力、心理和生理上的压力大大增强。未来的信息化战争将是一场你死我活的搏杀。

四、 对经济和科技的依赖性将越来越强

信息化战争对科技实力和经济实力有很大的依赖性。美国B—2A战略轰炸机单架飞机的研制费达到了20多亿美元;组建一个具有基本信息战能力的航母编队需要100多亿美元;一枚巡航导 弹值百万美元;一颗“锁眼-12”卫星的造价达14亿美元。42天的海湾战争中,美军消耗物资种类达1.7万余种、3千多万吨,花去了1100多亿美元。随着信息化战争的发展,其对经济和科技的依赖程度将会越来越大。信息化武器的研制、生产、维护、使用都离不开科技力量和经济力量的支撑。高素质人才培训、购置昂贵的设备和较长的研制周期,都需要耗费巨资;科研成果产业化的投资比研究开发投资还要高出5~20倍;信息技术更新换代快,新武器的替换耗费大量。信息技术发展越快,信息化战争的经济科技依赖性越强。

五、 战争的不对称表现日趋多样

在目前发生的信息化战争中,作战双方往往在战争体系、战争力量、战略、作战方式、军事理论和战争结局等方面具有多侧面的不对称性。这与信息技术和信息化社会发展的特点有关,也与战争主体在政治、经济、军事、文化、科技、自然等各方面的差距有关。随着信息化战争的发展,信息技术发展的特点将进一步突显。信息技术将向多个领域推进,新信息技术会层出不穷,技术生命将越来越短,技术的军事应用方法将越来越多,信息对抗的途径将越来越多,作战手段将越来越多,各国在信息技术、军事理论、政治文化的发展上的差距和差别不会消失。可以预测,在信息化战争的发展过程中,不对称的战争表现还会存在,并更具多样性。