农田小气候观测实验报告心得体会_农田小气候观测实验
1.农田小气候集系统是什么?
2.农田小气候的二氧化碳
3.农田小气候的湿度
4.农田小气候有什么特征?如何改善农田小气候以使农作物更好的生长发育
小气候是指由于下垫面结构和性质不同,造成热量和水分收支差异,从而在小范围内形成一种与大气候不同特点的气候,统称小气候。
在一个地区的每一块地方(如农田、温室、仓库、车间、庭院等)都要受到该地区气候条件的影响,同时因下垫面性质不同、热状况各异,又有人的活动等,就会形成小范围特有的气候状况,小气候中的温度、湿度、光照、通风等条件,直接影响作物的生长,人类的工作环境,家庭的生活情趣等。可通过一定的技术措施加以改善。
农田小气候集系统是什么?
太阳光进入农田作物层中,受到茎叶层层削弱,有些被吸收,有些被反射,部分透过第1层叶片,进入第 2层之后又被反射和吸收,部分则经过从茎叶空隙直达地面。作物茎叶对太阳光能进行多次反射和吸收。透射的强弱程度与作物本身的生育状况和群体结构有关,后者也反过来影响作物的生长发育。
在作物生长发育的盛期,不同高度上单位体积内的茎叶表面积数量表现为上层多、下层少;上层茎叶密集,遮挡了大量的直射光透入下层。茎叶对光能的削弱作用,也是上层显著,下层较差。总辐射、直接辐射和漫射辐射的铅直分布趋势基本相似,都是从上往下递减,并且都在开始时递减缓慢,通过枝叶密集的作物群体上层时递减迅速,到了下层递减速度又减慢。晴天农田各个高度上太阳辐射的日变化基本一致,均为早晚弱而中午强;但是量值变化白天在各个高度上却存在差异;高度越高光照强度越大,反之则越小。
农田小气候的二氧化碳
佳多农林小气候信息集系统广泛应用于农、林行业的植保推广、科研和教学单位病虫研究和病虫测报领域,用先进的生物传感器、微型控制器,实现病虫害测报必需的区域性气象数据的定点自动集、储存、打印,单机累计存储365天,数据也可随时为生物动态提供环境因子依据,导入Excel进行编辑分析。是植保部门病虫测报可视化、网络化、标准化、自动化工作必备的基本设备,全天候无人值守连续自动工作,本系统可与佳多ATCSP农林物联网系统联网,达到国家、省、市、县、乡各级信息集站无线传输,远程控制,信息数据共享。
本系统通过多种传感器完成本区域内空温、空湿、土温、土湿、光照度、蒸发量、降雨量、风速、风向、结露、有效光合因子的集,自动上传至服务器。
农田小气候的湿度
农田二氧化碳的状况,决定于农田湍流交换强度、大气中二氧化碳含量和土壤释放二氧化碳数量 3方面的因素。作物层内二氧化碳浓度在叶面积密度最大层次附近为最低。在白天,农田二氧化碳由作物层上部向下和由地面向上输送。
农田技术措施小气候效应
在自然条件下,小气候适合植物生长发育要求时植物长势良好,枝叶茂盛;但群体结构郁闭度也随之增大,达到一定限度后,通风透光和温湿度条件急剧恶化,植物生长发育受到抑制,病虫害随之滋生流行,常造成群体衰退、死亡。这种现象完全依赖 SPA系统的内部调节和适应过程。农田中作物群体的生育状况则除自然条件外,同时还受农业技术措施的影响,通过调节农田SPA系统中的某些环节,可以促进或延缓其中的物质交换和能量转化,从而改变由一定的大气候条件和作物群体所形成的农田小气候,改善作物生育环境。农田技术措施多种多样,所产生的小气候效应也因之而异。
农田小气候有什么特征?如何改善农田小气候以使农作物更好的生长发育
农田中的空气湿度状况主要取决于农田蒸散(即土壤蒸发和植物蒸腾之和)和大气湿度两个因素。农田作物层内土壤蒸发和植物蒸腾的水汽,往往因为株间湍流交换的减弱而不易散逸,故与裸地比较农田中的空气湿度一般相对较高。
绝对湿度 绝对湿度铅直分布情况同温度近似。在植物蒸腾面不大、土壤或水面蒸发为农田蒸散主要组成部分的情况下,农田中绝对湿度的铅直分布,均呈白天随离地面高度的增加而减少,夜间则随高度而递增的趋势。在作物生长发育的盛期,作物茎叶密集,植物蒸腾在农田蒸散中占主导地位,绝对湿度的铅直分布就有变化。邻近外活动面的部位,在白天是主要蒸腾面,因而中午时分绝对湿度高;到了夜间,这一部位常有大量的露和霜出现,绝对湿度就低。
相对湿度 农田中相对湿度的铅直分布比较复杂,它取决于绝对湿度和温度。一般在作物生长发育初期,不论白天和夜间,相对湿度都是随高度的升高而降低。到生长发育盛期,白天在茎叶密集的外活动面附近,相对湿度最高,地面附近次之;夜间外活动面和内活动面的气温都较低,作物层中各高度上的相对湿度都很接近。生长发育后期白天的情况期相近,但夜间由于地面气温低,最大相对湿度又出现在这里。
水田中湿度铅直分布相对比较简单,不论白天和夜间绝对湿度都随高度增加而降低;相对湿度在白天和绝对湿度的分布一致,夜间则相反。
错综复杂的农田小气候常通过农田中不同作物群体结构内辐射、温度、湿度、风和二氧化碳等农业气象要素的变化反映其主要特征。在作物生长发育的盛期(如谷类作物的抽穗期),这种特征的反映往往更为典型。这是因为作物群体结构、农田活动层及其边界层到这时才得到充分发展,因而由蒸腾作用、光合作用、呼吸作用等生物学过程所引起的作物与土壤、空气之间的水汽、二氧化碳等物质交换,以及作物层辐射能、热能的能量转化等物理学过程,最为旺盛和突出。
光和辐射 太阳光进入农田作物层中,受到茎叶层层削弱,有些被吸收,有些被反射,部分透过第1层叶片,进入第 2层之后又被反射和吸收,部分则经过从茎叶空隙直达地面。作物茎叶对太阳光能进行多次反射和吸收。透射的强弱程度与作物本身的生育状况和群体结构有关,后者也反过来影响作物的生长发育。
在作物生长发育的盛期,不同高度上单位体积内的茎叶表面积数量表现为上层多、下层少;上层茎叶密集,遮挡了大量的直射光透入下层。茎叶对光能的削弱作用,也是上层显著,下层较差。总辐射、直接辐射和漫射辐射的铅直分布趋势基本相似,都是从上往下递减,并且都在开始时递减缓慢,通过枝叶密集的作物群体上层时递减迅速,到了下层递减速度又减慢。晴天农田各个高度上太阳辐射的日变化基本一致,均为早晚弱而中午强;但是量值变化白天在各个高度上却存在差异;高度越高光照强度越大,反之则越小。
温度 农田作物层中的空气温度,主要决定于作物群体结构内不同茎叶层透入太阳辐射和湍流交换(影响水汽和热量输送)强弱的对比关系。在作物群体密度大的情况下,由于作物群体内辐射被削弱,作物层内白天的空气温度与裸地比较相对较低,夜间则相对较高。如作物密度不大,则在其对湍流的削弱作用大于对辐射的削弱作用情况下,作物层中的温度在夜间就可能相对高些。由于不同作物和不同生育期农田小气候的物理学和生物学基础不一,农田上温度的铅直分布情况有相当的差异。
生长发育初期和后期 在初期,作物茎矮叶小,植株覆盖面积少且分布稀疏,白天和夜间空气温度的铅直分布几乎与裸地一样,即白天呈温度由地面向上递减的日射型分布,夜间呈温度随高度增加而相应上升的辐射型分布。到作物成熟的生长发育后期,禾谷类作物茎叶枯黄,阳光透达地面,植株蒸腾减弱,农田空气温度的铅直分布又几乎回复到生长发育初期的状况。水平阔叶作物(如棉花地)的情况有所不同,白天空气温度铅直分布廓线的最高点并不出现在地面,而是在植株顶部的叶面附近,夜间温度廓线的最低点却仍在地面。
生长发育盛期 这一时期,作物封行,枝繁叶茂,形成小气候的因子变化频繁,温度铅直分布情况也较为复杂,白天和夜间温度的分布曲线正好相反。在作物茎叶密集层的上部,亦即邻近外活动面之外,白天获得太阳辐射热量较多,而湍流较弱,蒸腾也较小,温度铅直廓线上的最高值就出现在这一部位。到了夜间,农田冷空气既不能停滞在作物顶部,也不会下沉到作物保护下的地面,而是积聚在作物层中某一高度上。这一高度既是作物层上表面下沉的冷空气汇集之处,又是株间空气受作物本身辐射最显著的地方。其温度是铅直廓线上的最低值,其向上、向下的温度都是递增的。白天农田内温度廓线上的最低值大多出现在茎叶密集层内,这是因为这个部位所得到的热量本来就不如上层多,且大量也消耗在作物蒸腾上,用于提高空气温度的热量相对较少。出现最高值和最低值的部位,一般都有位移现象,即随着植株高度和密度两者的增加相应抬升。
温度在水田上的分布情况和旱地有异。这种差别在贴近水面的气层内,表现得最为明显。在水田中,白天铅直分布的特点同旱地一样,也有一个温度铅直分布的最高点处在某高度上。在此高度以上,温度铅直分布趋势同旱地基本相似,也呈日射型分布,但在此高度以下,由于水体蒸发耗热和对太阳辐射的减弱作用,温度呈辐射型分布,类似裸地夜间温度分布情况。夜间,植株上层空气虽然较冷,而贴近水面的空气温度仍较高,温度铅直分布的形式恰与白天相反,即下部呈日射型,上部略呈辐射型。
湿度 农田中的空气湿度状况主要取决于农田蒸散(即土壤蒸发和植物蒸腾之和)和大气湿度两个因素。农田作物层内土壤蒸发和植物蒸腾的水汽,往往因为株间湍流交换的减弱而不易散逸,故与裸地比较农田中的空气湿度一般相对较高。
绝对湿度 绝对湿度铅直分布情况同温度近似。在植物蒸腾面不大、土壤或水面蒸发为农田蒸散主要组成部分的情况下,农田中绝对湿度的铅直分布,均呈白天随离地面高度的增加而减少,夜间则随高度而递增的趋势。在作物生长发育的盛期,作物茎叶密集,植物蒸腾在农田蒸散中占主导地位,绝对湿度的铅直分布就有变化。邻近外活动面的部位,在白天是主要蒸腾面,因而中午时分绝对湿度高;到了夜间,这一部位常有大量的露和霜出现,绝对湿度就低。
相对湿度 农田中相对湿度的铅直分布比较复杂,它取决于绝对湿度和温度。一般在作物生长发育初期,不论白天和夜间,相对湿度都是随高度的升高而降低。到生长发育盛期,白天在茎叶密集的外活动面附近,相对湿度最高,地面附近次之;夜间外活动面和内活动面的气温都较低,作物层中各高度上的相对湿度都很接近。生长发育后期白天的情况期相近,但夜间由于地面气温低,最大相对湿度又出现在这里。
水田中湿度铅直分布相对比较简单,不论白天和夜间绝对湿度都随高度增加而降低;相对湿度在白天和绝对湿度的分布一致,夜间则相反。
风 农田中的风速与作物群体结构的植株密度关系很大。由于植株阻挡,摩擦作用使农田中的风速相对较小。从风速的水平分布看,风速由农田边行向农田中部不断减弱,最初减弱很快,以后减慢,到达一定距离后不再变化。从铅直方向看,风速在作物层中茎叶稠密部位受到较大削弱;顶部和下部茎叶稀少,风速较大;离边行较远的地方的作物层下部风速较小。
二氧化碳 农田二氧化碳的状况,决定于农田湍流交换强度、大气中二氧化碳含量和土壤释放二氧化碳数量 3方面的因素。作物层内二氧化碳浓度在叶面积密度最大层次附近为最低。在白天,农田二氧化碳由作物层上部向下和由地面向上输送。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。